Communications
Scheme 3. Proposed steps in the transformations of 6 and 9 into mono- and ditriazoles.
alkyne/acetylide units and one azide, has been uncovered by
kinetics measurements. For certain 1,2- and 1,3-diazides, the
formation of the second triazole ring was found to be much
faster than the first. An unusual inhibitory effect of benzyl
azide was also observed, which suggests the presence of two
pathways to ditriazole, one via free monotriazole and the
other via a copper(i) organometallic intermediate. Much, of
course, remains to be explained. For example, in addition to
employing only one of its two acetylide fragments in cyclo-
addition, complex 5 was found to mediate the exclusive
transformation of 6 into 7, in remarkable contrast to all other
systems examined so far. The most important unresolved
issue is the precise nature of the putative binuclear copper
system responsible for efficient catalysis—a question we are
addressing with copper-chelating ligands. Preliminary meas-
urements with ligand-accelerated catalysts are currently
underway and show kinetic parameters similar to those
described above. The requirement for two copper centers and
the advantages of intramolecular positioning of azide groups
are highlighted in the selective synthesis of cyclic peptide
dimers, described in the accompanying paper.[20] These
principles also provide guidance for ongoing efforts in our
laboratories to develop new ligands and self-accelerating
(autocatalytic) systems.
[1] R. Huisgen in 1,3-Dipolar Cycloaddition Chemistry, Vol. 1 (Ed.:
A. Padwa), Wiley, New York, 1984, pp. 1 – 176.
[2] a) W. G. Lewis, L. G. Green, F. Grynszpan, Z. Radic, P. R.
Carlier, P. Taylor, M. G. Finn, K. B. Sharpless, Angew. Chem.
2002, 114, 1095 – 1099; Angew. Chem. Int. Ed. 2002, 41, 1053 –
1057; b) H. C. Kolb, K. B. Sharpless, Drug Discovery Today 2003,
8, 1128 – 1137.
[3] a) C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002,
67, 3057 – 3062; b) V. V. Rostovtsev, L. G. Green, V. V. Fokin,
K. B. Sharpless, Angew. Chem. 2002, 114, 2708 – 2711; Angew.
Chem. Int. Ed. 2002, 41, 2596 – 2599.
[4] a) Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless,
M. G. Finn, J. Am. Chem. Soc. 2003, 125, 3192 – 3193; b) A. J.
Link, D. A. Tirrell, J. Am. Chem. Soc. 2003, 125, 11164 – 11165;
c) A. E. Speers, B. F. Cravatt, Chem. Biol. 2004, 11, 535 – 546;
d) A. E. Speers, G. C. Adam, B. F. Cravatt, J. Am. Chem. Soc.
2003, 125, 4686 – 4687; e) L. V. Lee, M. L. Mitchell, S.-J. Huang,
V. V. Fokin, K. B. Sharpless, C.-H. Wong, J. Am. Chem. Soc.
2003, 125, 9588 – 9589; f) A. Deiters, T. A. Cropp, M. Mukherji,
J. W. Chin, J. C. Anderson, P. G. Schultz, J. Am. Chem. Soc. 2003,
125, 11782 – 11783; g) R. Breinbauer, M. Kꢀhn, ChemBioChem
2003, 4, 1147 – 1149.
[5] a) F. Fazio, M. C. Bryan, O. Blixt, J. C. Paulson, C.-H. Wong, J.
Am. Chem. Soc. 2002, 124, 14397 – 14402; b) K. D. Bodine, D. Y.
Gin, M. S. Gin, J. Am. Chem. Soc. 2004, 126, 1638 – 1639; c) T. S.
Seo, Z. Li, H. Ruparel, J. Ju, J. Org. Chem. 2003, 68, 609 – 612;
d) Z. Zhou, C. J. Fahrni, J. Am. Chem. Soc. 2004, 126, 8862 –
8863; e) T. Jin, S. Kamijo, Y. Yamamoto, Eur. J. Org. Chem. 2004,
3789 – 3791.
Received: July 31, 2004
Revised: October 18, 2004
Published online: February 3, 2005
[6] a) P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel,
B. Voit, J. Pyun, J. M. J. Frꢁchet, K. B. Sharpless, V. V. Fokin,
Angew. Chem. 2004, 116, 4018 – 4022; Angew. Chem. Int. Ed.
2004, 43, 3928 – 3932; b) D. D. Dꢂaz, S. Punna, P. Holzer, A. K.
McPherson, K. B. Sharpless, V. V. Fokin, M. G. Finn, J. Polym.
Sci. Part A 2004, 42, 4392 – 4403; c) J. P. Collman, N. K. Devaraj,
Keywords: alkynes · azides · click chemistry · copper ·
.
cycloaddition
2214
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 2210 –2215