Chemistry - A European Journal
10.1002/chem.202004613
FULL PAPER
T. H. Chan, A. S. C. Chan, Org. Lett. 2007, 9, 4295-4298; b) T. Hoshi, K.
Sasaki, S. Sato, Y. Ishii, T. Suzuki, H. Hagiwara, Org. Lett. 2011, 13,
Acknowledgements
9
32-935; c) Z. Cao, Y. Liu, Z. Liu, X. Feng, M. Zhuang, H. Du, Org. Lett.
This work is supported by National Natural Science Foundation of
China (NSFC) (Grant 21602130), and the start funding of
Shanghai Jiao Tong University.
2011, 13, 2164-2167; d) Z. Liu, Z. Cao, H. Du, Org. Biomol. Chem. 2011,
9, 5369-5372; e) B. Feng, X.-Y. Pu, Z.-C. Liu, W.-J. Xiao, J.-R. Chen,
Org. Chem. Front. 2016, 3,1246–1249; f) S. Panda, J. M. Ready, J. Am.
Chem. Soc. 2017, 139, 6038-6041; g) T. Mino, D. Yamaguchi, C.
Masuda, J. Youda, T. Ebisawa, Y. Yoshida, M. Sakamoto, Org. Biomol.
Chem. 2019, 17, 1455-1465. For asymmetric C3-allylation of indoles with
unsymmetric disubstituted allylic substrates, see: h) L. Du, P. Cao, J.
Xing, Y. Lou, L. Jiang, L. Li, J. Liao, Angew. Chem. Int. Ed. 2013, 52,
4207-4211; Angew. Chem. 2013, 125, 4301-4305.
Keywords: Allylic Substitutions • Rhodium • Indole • Asymmetric
Catalysis • Chemo-divergent
[
1]
For the synthesis of indole based biologically active molecules, see: a)
U. Scholz, E. Winterfeldt, Nat. Prod. Rep. 2000, 17, 349-366; b) G. R.
Humphrey, J. T. Kuethe, Chem. Rev. 2006, 106, 2875-2911; c) S. E.
O’Connor, J. J. Maresh, Nat. Prod. Rep. 2006, 23, 532-547; d) A. J.
Kochanowska-Karamyan, M. T. Hamann, Chem. Rev. 2010, 110, 4489-
[6]
For the asymmetric dearomative C3-allylation of 3-substituted indoles,
see: a) B. M. Trost, J. Quancard, J. Am. Chem. Soc. 2006, 128, 6314-
6315; b) Y. Liu, H. Du, Org. Lett. 2013, 15, 740-743; c) X. Zhang, L. Han,
S.-L. You, Chem. Sci. 2014, 5, 1059-1063; d) X. Zhang, W.-B. Liu, H.-F.
Tu, S.-L. You, Chem. Sci. 2015, 6, 4525-4529; e) J. M. Müller, C. B. W.
Stark, Angew. Chem. Int. Ed. 2016, 55, 4798-4802; Angew. Chem. 2016,
128, 4877-4881; f) R.-D. Gao, Q.-L. Xu, B. Zhang, Y. Gu, L.-X. Dai, S.-L.
You, Chem. Eur. J. 2016, 22, 11601-11604; g) R.-D. Gao, L. Ding, C.
Zheng, L.-X. Dai, S.-L. You, Org. Lett. 2018, 20, 748-751; h) B. M. Trost,
W.-J. Bai, C. Hohn, Y. Bai, J. J. Cregg, J. Am. Chem. Soc. 2018, 140,
6710-6717.
4497; e) J.-B. Chen, Y.-X. Jia, Org. Biomol. Chem. 2017, 15, 3550-3567;
f) C. Zheng, S.-L. You, Nat. Prod. Rep. 2019, 36, 1589-1605.
[
2]
For selected reviews on asymmetric Friedel-Crafts type functionalization
of indoles, see: a) M. Bandini, A. Melloni, A. Umani-Ronchi, Angew.
Chem. Int. Ed. 2004, 43, 550-556; Angew. Chem. 2004, 116, 560-566;
b) T. B. Poulsen, K. A. Jørgensen, Chem. Rev. 2008, 108, 2903-2915;
c) S.-L. You, Q. Cai, M. Zeng, Chem. Soc. Rev. 2009, 38, 2190-2201; d)
M. Bandini, A. Eichholzer, Angew. Chem. Int. Ed. 2009, 48, 9608-9644;
e) M. Zeng, S.-L. You, Synlett. 2010, 9, 1289-1301; f) G. Bartoli, G.
Bencivenni, R. Dalpozzo, Chem. Soc. Rev. 2010, 39, 4449-4465.
For selected examples on the asymmetric synthesis of N1-alkyl indoles,
see: a) M. Bandini, A. Eichholzer, M. Tragni, A. Umani-Ronchi, Angew.
Chem. Int. Ed. 2008, 47, 3238-3241; Angew. Chem. 2008, 120, 3282-
[7]
a) W.-B. Liu, H. He, L.-X. Dai, S.-L. You, Org. Lett. 2008, 10, 1815-1818;
b) W.-B. Liu, H. He, L.-X. Dai, S.-L. You, Synthesis 2009, 2076-2082; c)
J. A. Rossi-Ashton, A. K. Clarke, J. R. Donald, C. Zheng, R. J. K. Taylor,
W. P. Unsworth, S.-L. You, Angew. Chem. Int. Ed. 2020, 59, 7598-7604;
Angew. Chem. 2020, 132, 7668-7674; d) F. A. Cruz, Y. Zhu, Q. D.
Tercenio, Z. Shen, V. M. Dong, J. Am. Chem. Soc. 2017, 139, 10641-
10644.
[
3]
3
285; b) H.-L. Cui, X. Feng, J. Peng, J. Lei, K. Jiang, Y.-C. Chen, Angew.
Chem. Int. Ed. 2009, 48, 5737-5740; Angew. Chem. 2009, 121, 5847-
850; c) Y. Xie, Y. Zhao, B. Qian, L. Yang, C. Xia, H. Huang, Angew.
Chem. Int. Ed. 2011, 50, 5682-5686; Angew. Chem. 2011, 123, 5800-
804; d) H.-G. Cheng, L.-Q. Lu, T. Wang, Q.-Q. Yang, X.-P. Liu, Y. Li,
Q.-H. Deng, J.-R. Chen, W.- J. Xiao, Angew. Chem. Int. Ed. 2013, 52,
250-3254; Angew. Chem. 2013, 125, 3332-3336; e) Q. M. Kainz, C. D.
Matier, A. Bartoszewicz, S. L. Zultanski, J. C. Peters, G. C. Fu, Science
[8]
[9]
a) L. M. Stanley, J. F. Hartwig, Angew. Chem. Int. Ed. 2009, 48, 7841-
7844; Angew. Chem. 2009, 121, 7981-7984; b) B. M. Trost, M. Osipov,
G. Dong, J. Am. Chem. Soc. 2010, 132, 15800-15807; c) K.-Y. Ye, Q.
Cheng, C.-X. Zhuo, L.-X. Dai, S.-L. You, Angew. Chem. Int. Ed. 2016,
55, 8113-8116; Angew. Chem. 2016, 128, 8245-8248.
5
5
3
L.-Y. Chen, X.-Y. Yu, J.-R. Chen, B. Feng, H. Zhang, Y.-H. Qi, W.-J. Xiao,
Org. Lett. 2015, 17, 1381-1384.
2
016, 351, 681-684; f) M. Chen, J. Sun, Angew. Chem. Int. Ed. 2017, 56,
[10] For an example of N1 allylation from oxygen-substituted allenes, see: S.
H. Jang, H. W. Kim, W. Jeong, D. Moon, Y. H. Rhee, Org. Lett. 2018, 20,
1248-1251.
4583-4587; Angew. Chem. 2017, 129, 4654-4658; g) B. M. Trost, E.
Gnanamani, C.-I. Hung, Angew. Chem. Int. Ed. 2017, 56, 10451-10456;
Angew. Chem. 2017, 129, 10587-10592; h) Y. Zi, M. Lange, C. Schultz,
I. Vilotijevic, Angew. Chem. Int. Ed. 2019, 58, 10727-10731; Angew.
Chem. 2019, 131, 10837-10841; i) Y. Ye, S.-T. Kim, J. Jeong, M.-H. Baik,
S. L. Buchwald, J. Am. Soc. Chem. 2019, 141, 3901-3909; j) J. R. Allen,
A. Bahamonde, Y. Furukawa, M. S. Sigman, J. Am. Chem. Soc. 2019,
[11] a) W.-B. Liu, X. Zhang, L.-X. Dai, S.-L. You, Angew. Chem. Int. Ed. 2012,
51, 5183-5187; Angew. Chem. 2012, 124, 5273-5277; b) K.-Y. Ye, L.-X.
Dai, S.-L. You, Chem. Eur. J. 2014, 20, 3040-3044; c) Q.-A. Chen, Z.
Chen, V. M. Dong, J. Am. Chem. Soc. 2015, 137, 8392-8395; d) K. Xu,
T. Gilles, B. Breit, Nat. Commun. 2015, 6, 7616.
1
41, 8670-8674; k) Y. Wang, S. Wang, W. Shan, Z. Shao, Nat. Commun.
[12] For non-asymmetric N1-allylation, see: a) M. R. Luzung, C. A. Lewis, P.
S. Baran, Angew. Chem. Int. Ed. 2009, 48, 7025−7029; Angew. Chem.
2009, 121, 7159−7163; b) C.-Y. Chang, Y.-H. Lin, Y.-K. Wu, Chem.
Commun. 2019, 55, 1116-1119.
2020, 11, 226.
[
4]
For a recent book on transition-metal-catalyzed asymmetric substitutions,
see: a) Transition Metal Catalyzed Enantioselective Allylic Substitution in
Organic Synthesis, (Eds.: U. Kazmaier), Springer Verlag: Berlin and
Heidelberg, Germany, 2012. For selected reviews on Pd, see: b) B. M.
Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395-422; c) B. M. Trost,
M. L. Crawley, Chem. Rev. 2003, 103, 2921-2943; d) Z. Lu, S. Ma,
Angew. Chem. Int. Ed. 2008, 47, 258-297; Angew. Chem. 2008, 120,
[13] a) S. W. Kim, T. T. Schempp, J. R. Zbieg, C. E. Stivala, M. J. Krische,
Angew. Chem. Int. Ed. 2019, 58, 7762-7766; Angew. Chem. 2019, 131,
7844-7848. For other examples of neutral π-allyliridium-C, O-benzoate
catalyst, see: b) A. T. Meza, T. Wurm, L. Smith, S. W. Kim, J. R. Zbieg,
C. E. Stivala, M. J. Krische, J. Am. Chem. Soc. 2018, 140, 1275-1279;
c) S. W. Kim, L. A. Schwartz, J. R. Zbieg, C. E. Stivala, M. J. Krische, J.
Am. Chem. Soc. 2019, 141, 671-676.
264-303. For selected reviews, on Ir, see: e) J. F. Hartwig, L. M. Stanley,
Acc. Chem. Res. 2010, 43, 1461-1475; f) J. Qu, G. Helmchen, Acc.
Chem. Res. 2017, 50, 2539-2555; g) Q. Cheng, H.-F. Tu, C. Zheng, J.-
P. Qu, G. Helmchen, S.-L. You, Chem. Rev. 2019, 119, 1855-1969; h) S.
L. Rössler, D. A. Petrone, E. M. Carreira, Acc. Chem. Res. 2019, 52,
[14] For examples of non-chiral version on the C3/N1 control of indoles, see:
a) M. Bandini, A. Melloni, A. Umani-Ronchi, Org. Lett. 2004, 6, 3199-
3202; b) X. Fang, Q. Li, R. Shi, H. Yao, A. Lin, Org. Lett. 2018, 20, 6084-
6088.
2657-2672. For reviews on Rh-catalyzed asymmetric allylic substitutions,,
see: i) J. S. Arnold, Q. Zhang, H. M. Nguyen, Eur. J. Org. Chem. 2014,
[15] For Co/bisoxazolinephosphine-catalyzed asymmetric allylic substitutions,
see: a) S. Ghorai, S. S. Chirke, W.-B. Xu, J.-F. Chen, C. Li, J. Am. Chem.
Soc. 2019, 141, 11430−11434; b) S. Ghorai, S. U. Rehman, W.-B. Xu,
W.-Y. Huang, C. Li, Org. Lett. 2020, 22, 3519-3523. The indoles allylation
reaction cannot be catalyzed by the Co/bisoxazolinephosphine catalyst.
[16] For Rh/NPN-catalyzed asymmetric allylic substitutions, a) W.-B. Xu, S.
Ghorai, W. Huang, C. Li, ACS Catal. 2020, 10, 4491-4496; b) W.-Y.
Huang, C.-H. Lu, S. Ghorai, B. Li, C. Li, J. Am. Chem. Soc. 2020, 142,
4925−4948; j) P. Koschker, B. Breit, Acc. Chem. Res. 2016, 49, 1524-
1536; k) B. W. H. Turnbull, P. A. Evans, J. Org. Chem. 2018, 83, 11463-
11479; l) M. B. Thoke, Q. Kang, Synthesis 2019, 51, 2585-2631; For
other metals, see: m) C. Moberg, Top. Organomet. Chem. 2012, 38, 209-
34; n) V. Hornillos, J.-B. Gualtierotti, B. L. Feringa, Top. Organomet.
2
Chem. 2016, 58, 1-40.
[
5]
For the asymmetric C3-allylation of indoles with symmetric substrates,
see: a) H. Y. Cheung, W.-Y. Yu, F. L. Lam, T. T.-L. Au-Yeung, Z. Zhou,
5
This article is protected by copyright. All rights reserved.