A. Saitoh et al. / Tetrahedron: Asymmetry 10 (1999) 1025–1028
1027
Table 1
Asymmetric allylic alkylations of 5 catalyzed by a palladium–1 complexa
synthesis, application to other asymmetric reactions, and mechanistic considerations12,13 are being
currently pursued.
References
1. (a) Tsuji, J. Transition Metals in Organic Synthesis; Kagaku Dojin: Japan, 1997. (b) Tsuji, J. Palladium Reagents and
Catalysts, Innovations in Organic Synthesis; John Wiley: New York, 1995; p. 290.
2. (a) Frost, C. G.; Howarth, J.; Williams, J. M. J. Tetrahedron: Asymmetry 1992, 3, 1089. (b) Hayashi, T. In Catalytic
Asymmetric Synthesis; Ojima, I., Ed. VCH: New York, 1993; Vol. 1, p. 325. (c) Trost, B. M.; van Vranken, D. L. Chem.
Rev. 1996, 96, 395.
3. (a) Saitoh, A.; Morimoto, T.; Achiwa, K. Tetrahedron: Asymmetry 1997, 8, 3567. (b) Saitoh, A.; Achiwa, K.; Morimoto,
T. Tetrahedron: Asymmetry 1998, 9, 741.
4. As one of the strategies, we derived chiral P–N hybrid ligands 4 consisting of imino groups with diverse phenyl substituents
from the precursor of VALAP, (2S)-2-amino-1-(diphenylphosphino)-3-methylbutane 2,3a in which the drastic improvement
of catalytic performance by electronic tuning for the ligands was demonstrated in palladium-catalyzed asymmetric
allylations. Saitoh, A.; Misawa, M.; Morimoto, T. Synlett, in press.
5. (a) Trost, B. M.; Bunt, R. C. J. Am. Chem. Soc. 1994, 116, 4089. (b) Knühl, G.; Sennhenn, P.; Helmchen, G. J. Chem.
Soc., Chem. Commun. 1995, 1845. (c) Kudis, S.; Helmchen, G. Angew. Chem., Int. Ed. Engl. 1998, 37, 3047. (d) Dierkes,
P.; Ramdeehul, S.; Barloy. L.; Cian, A. D.; Fischer, J.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Osborn, J. A. Angew.
Chem., Int. Ed. Engl. 1998, 37, 3116.
6. Asymmetric allylations of cycloalkenyl substrates by phosphanyldihydrooxazoles, see: (a) Sennhenn, P.; Gabler, B.;
Helmchen, G. Tetrahedron Lett. 1994, 35, 8595. For other P–N hybrid ligands, see: (b) Brown, J. M.; Hulmes, D. I.;
Guiry, P. Tetrahedron 1994, 50, 4493. (c) Bourghida, M.; Widhalm, M. Tetrahedron: Asymmetry 1998, 9, 1073.
7. Whitesell, J. K. Chem. Rev. 1989, 89, 1581.
8. Analytical data for the ligand 1 isolated as a white solid: mp=57–59°C; [α]D24 +21.3 (c 0.5, CHCl3); 1H NMR (270 MHz,
CDCl3) δ: 0.90 (d, 6H, J=6.6 Hz), 0.92 (d, 6H, J=6.6 Hz), 2.00–2.12 (m, 2H), 2.26–2.41 (m, 4H), 4.03–4.17 (m, 2H),
6.78 (d, 2H, J=8.9 Hz), 7.26–7.47 (m, 24H); 31P{1H} NMR (161.7 MHz, CDCl3, H3PO4) δ: −22.74; FAB-MS: m/z 673
(MH+); IR (KBr): 1643 cm−1 (C_O), 3256 cm−1 (NH).
9. Typical procedure for asymmetric reactions (entry 1): A solution of [Pd(η3-C3H5)Cl]2 (4 mg, 0.0109 mmol) and 1 (17.6
mg, 0.0262 mmol) in 1 ml of CH2Cl2 (dry and oxygen free) was stirred at room temperature under Ar, followed by
adding compound 5 (79.4 mg, 0.436 mmol) in 1 ml of CH2Cl2. To the mixture was added a nucleophile solution prepared
in another flask by mixing dimethyl malonate (173 mg, 1.31 mmol) and BSA (266 mg, 1.31 mmol) in the presence of
lithium acetate (1.4 mg, 0.0218 mmol) in 2 ml of the solvent. After stirring at room temperature for 24 h and checking
the reaction by gas chromatography, the volatiles were removed in vacuo. The residue was purified by preparative TLC
1
(toluene:AcOEt=20:1). (S)-Dimethyl cyclohex-2-enylmalonate 6: H NMR (270 MHz, CDCl3) δ: 1.31–1.81 (m, 4H),