2
056
P. Horrillo-Martínez, K. C. Hultzsch / Tetrahedron Letters 50 (2009) 2054–2056
Eichberger, M.; Hartung, C. G.; Seayad, J.; Thiel, O. R.; Tillack, A.; Trauthwein, H.
Et
2
Zn, which had been previously shown to mediate hydroamina-
11c
Synlett 2002, 1579–1594.
(a) Closson, R. D.; Napolitano, J. P.; Ecke, G. G.; Kolka, A. J. Org. Chem. 1957, 22,
tion/cyclization of aminoalkynes,
of 8 at 60 °C to give the desired pyrrolidine in quantitative conver-
sion within 4 days.
catalyzes also the cyclization
6.
646–649; (b) Howk, B. W.; Little, E. L.; Scott, S. L.; Whitman, G. M. J. Am. Chem.
Soc. 1954, 76, 1899–1902; (c) Wegler, R.; Pieper, G. Chem. Ber. 1950, 83, 1–6.
Seayad, J.; Tillack, A.; Hartung, C. G.; Beller, M. Adv. Synth. Catal. 2002, 344, 795–
7.
8.
9.
The present study was aimed to ascertain the catalytic activity
of magnesium-based hydroamination catalysts. While (S,S,S)-2
and (R,S,S)-2 displayed only poor enantioselectivities in asymmet-
ric hydroaminations, they certainly show that magnesium-based
catalysts are viable, and that the chelating nature of the diamido-
binaphthyl ligands can enhance catalytic activity by prevention
of aggregate formation. The catalytic activity of the magnesium
complexes seems to be of similar order of magnitude, though
somewhat reduced, in comparison to calcium- and strontium-
based catalysts. Facile ligand redistribution processes leading to
achiral catalytic active species have thwarted our efforts to achieve
appreciable enantioselectivities with these catalysts. The zinc-
based catalysts show for the first time the feasibility of asymmetric
hydroamination even under the harsh reaction conditions required
for these catalysts, although the observed enantioselectivities are
low. In order to improve catalyst efficiency and selectivity, we be-
lieve that it is imperative to utilize chiral ligands that will mini-
813.
Horrillo Martínez, P.; Hultzsch, K. C.; Hampel, F. Chem. Commun. 2006, 2221–
2223.
(a) Quinet, C.; Jourdain, P.; Hermans, C.; Ates, A.; Lucas, I.; Marko, I. E.
Tetrahedron 2008, 64, 1077–1087; (b) Ogata, T.; Ujihara, A.; Tsuchida, S.;
Shimizu, T.; Kaneshige, A.; Tomioka, K. Tetrahedron Lett. 2007, 48, 6648–6650;
(c) Horrillo-Martínez, P.; Hultzsch, K. C.; Gil, A.; Branchadell, V. Eur. J. Org. Chem.
2
007, 3311–3325; (d) Ates, A.; Quinet, C. Eur. J. Org. Chem. 2003, 1623–1626.
0. (a) Datta, S.; Gamer, M. T.; Roesky, P. W. Organometallics 2008, 27, 1207–1213;
b) Buch, F.; Harder, S. Z. Naturforsch. 2008, 63b, 169–177; (c) Datta, S.; Roesky,
1
(
P. W.; Blechert, S. Organometallics 2007, 26, 4392–4394; (d) Crimmin, M. R.;
Casely, I. J.; Hill, M. S. J. Am. Chem. Soc. 2005, 127, 2042–2043.
1
0
1
1. (a) Dochnahl, M.; Löhnwitz, K.; Pissarek, J.-W.; Roesky, P. W.; Blechert, S. Dalton
Trans. 2008, 2844–2848; (b) Dochnahl, M.; Löhnwitz, K.; Pissarek, J.-W.;
Biyikal, M.; Schulz, R.; Schön, S.; Meyer, N.; Roesky, P. W.; Blechert, S. Chem.
Eur. J. 2007, 13, 6654–6666; (c) Yin, Y.; Ma, W.; Chai, Z.; Zhao, G. J. Org. Chem.
2007, 72, 5731–5736; (d) Meyer, N.; Löhnwitz, K.; Zulys, A.; Roesky, P. W.;
Dochnahl, M.; Blechert, S. Organometallics 2006, 25, 3779–3783; (e) Dochnahl,
M.; Pissarek, J.-W.; Blechert, S.; Löhnwitz, K.; Roesky, P. W. Chem. Commun.
2006, 3405–3407; (f) Zulys, A.; Dochnahl, M.; Hollmann, D.; Löhnwitz, K.;
Herrmann, J.-S.; Roesky, P. W.; Blechert, S. Angew. Chem. Int. Ed. 2005, 44,
7
2
794–7798; (g) Shanbhag, G. V.; Halligudi, S. B. J. Mol. Catal. A: Chem. 2004, 222,
23–228; (h) Bódis, J.; Müller, T. E.; Lercher, J. A. Green Chem. 2003, 5, 227–231;
mize ligand
redistribution
processes
and
provide
a
configurational stable coordination environment around the metal
center under conditions of catalytic hydroamination.
(i) Neff, V.; Müller, T. E.; Lercher, J. A. Chem. Commun. 2002, 906–907; (j)
Müller, T. E.; Grosche, M.; Herdtweck, E.; Pleier, A.-K.; Walter, E.; Yan, Y.-K.
Organometallics 2000, 19, 170–183; (k) Müller, T. E.; Pleier, A.-K. J. Chem. Soc.
Dalton Trans. 1999, 583–588.
Acknowledgments
12. (a) Bonafoux, D.; Bordeau, M.; Biran, C.; Cazeau, P.; Dunogues, J. J. Org. Chem.
996, 61, 5532–5536; (b) Kondo, Y.; Yoshida, A.; Sakamoto, T. J. Chem. Soc.,
1
Perkin Trans. 1 1996, 2331–2332; (c) Van Draanen, N. A.; Arseniyadis, S.;
Crimmins, M. T.; Heathcock, C. H. J. Org. Chem. 1991, 56, 2499–2506; (d) Eaton,
P. E.; Lee, C.-H.; Xiong, Y. J. Am. Chem. Soc. 1989, 111, 8016–8018.
3. For reviews of lithium amides as reagents in organic synthesis, see: (a) Cox, P.
J.; Simpkins, N. S. Tetrahedron: Asymmetry 1991, 2, 1–26; (b) Snieckus, V. Chem.
Rev. 1990, 90, 879–933.
4. For reviews of magnesium amides and their application in organic synthesis,
see: (a) Shimizu, M.. In Science of Synthesis: Compounds of Groups 13 and 2 (Al,
Ga, In, Tl, Be ... Ba); Noyori, R., Ed.; Georg Thieme Verlag KG: Stuttgart, 2004;
Vol. 7, pp 661–668; (b) Henderson, K. W.; Kerr, W. J. Chem. Eur. J. 2001, 7, 3430–
Generous financial support by the Deutsche Forschungsgemeins-
chaft (DFG Emmy Noether programme) is gratefully acknowledged.
1
1
Supplementary data
3437.
1
5. For reviews on asymmetric hydroamination see: (a) Aillaud, I.; Collin, J.;
Hannedouche, J.; Schulz, E. Dalton Trans. 2007, 5105–5118; (b) Hultzsch, K. C.
Adv. Synth. Catal. 2005, 347, 367–391; (c) Hultzsch, K. C. Org. Biomol. Chem.
References and notes
1
.
.
(a) Noyori, R. Angew. Chem. Int. Ed. 2002, 41, 2008–2022; (b) Takabe, K.;
Katagiri, T.; Tanaka, J. Bull. Chem. Soc. Jpn. 1973, 46, 222–225.
For comprehensive and general hydroamination reviews, see: (a) Müller, T. E.;
Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795–3892;
2005, 3, 1819–1824; (d) Roesky, P. W.; Müller, T. E. Angew. Chem. Int. Ed. 2003,
4
2, 2708–2710.
2
1
6. For selected, leading examples for asymmetric hydroamination see: (a) Zhou,
J.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 12220–12221; (b) Aillaud, I.; Collin,
J.; Duhayon, C.; Guillot, R.; Lyubov, D.; Schulz, E.; Trifonov, A. Chem. Eur. J. 2008,
(
b) Brunet, J. J.; Neibecker, D. In Catalytic Heterofunctionalization from
Hydroamination to Hydrozirconation; Togni, A., Grützmacher, H., Eds.; Wiley-
VCH: Weinheim, 2001; pp 91–141; (c) Müller, T. E.; Beller, M. Chem. Rev. 1998,
1
4, 2189–2200; (c) LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am.
Chem. Soc. 2007, 129, 2452–2453; (d) Zhang, Z.; Bender, C. F.; Widenhoefer, R.
A. J. Am. Chem. Soc. 2007, 129, 14148–14149; (e) Wood, M. C.; Leitch, D. C.;
Yeung, C. S.; Kozak, J. A.; Schafer, L. L. Angew. Chem. Int. Ed. 2007, 46, 354–358;
98, 675–703.
3
.
.
(a) Taube, R. In Applied Homogeneous Catalysis; Cornils, B., Herrmann, W. A.,
Eds.; Wiley-VCH: Weinheim, 1996; Vol. 1, pp 507–520; (b) Steinborn, D.;
Taube, R. Z. Chem. 1986, 26, 349–359.
For reviews on early transition metal catalyzed hydroaminations, see: (a)
Severin, R.; Doye, S. Chem. Soc. Rev. 2007, 36, 1407–1420; (b) Lee, A. V.; Schafer,
L. L. Eur. J. Inorg. Chem. 2007, 2245–2255; (c) Odom, A. L. Dalton Trans. 2005,
(
f) Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. J. Am. Chem. Soc. 2006, 128, 3748–
3
4
759; (g) Watson, D. A.; Chiu, M.; Bergman, R. G. Organometallics 2006, 25,
731–4733; (h) Kim, J. Y.; Livinghouse, T. Org. Lett. 2005, 7, 1737–1739.
4
1
1
7. See Supplementary data.
8. The isolated magnesium complexes (S,S,S)-2 and (R,S,S)-2 retained heptane
2
25–233; (d) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673–686; (e) Doye,
S. Synlett 2004, 1653–1672; (f) Bytschkov, I.; Doye, S. Eur. J. Org. Chem. 2003,
35–946; (g) Pohlki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104–114.
(a) Brunet, J.-J.; Chu, N.-C.; Rodriguez-Zubiri, M. Eur. J. Inorg. Chem. 2007, 4711–
722; (b) Widenhoefer, R. A.; Han, X. Eur. J. Org. Chem. 2006, 4555–4563; (c)
Hartwig, J. F. Pure Appl. Chem. 2004, 76, 507–516; (d) Beller, M.; Breindl, C.;
from the dibutylmagnesium solution according to their 1H NMR spectra.
Attempts to remove this residual heptane have been unsuccessful so far, due to
the high sensitivity of the compounds.
9
5
.
1
2
9. Jung, M. E.; Pizzi, G. Chem. Rev. 2005, 105, 1735–1766.
0. Clegg, W.; Craig, F. J.; Henderson, K. W.; Kennedy, A. R.; Mulvey, R. E.; O’Neil, P.
A.; Reed, D. Inorg. Chem. 1997, 36, 6238–6246.
4