Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
9.
all-inorganic QLED exhibits a saturated green colour with luminance
of 1149 cd m-2, higher than those of the devices based on QD-OA and
QD-OT (Figure 6c). Moreover, the organic-ligands-capped device
break-down in high current region, while all-inorganic device shows
good tolerance of high current (Figure S6). However, due to the
much enhanced current density, the external quantum efficiency
(EQE) of all-inorganic devices (0.07%) is lower than the organic one
(0.22% of OA, 0.32% of OT) (Figure 6d).
DOI: 10.1039/C9CC04157E
Nature, 2015, 523, 324-328.
M. V. Kovalenko, M. Scheele and D. V. Talapin, Science,
2009, 324, 1417-1420.
S. Kim, A. R. Marshal, D. M. Kroupa, E. M. Miller, J. M.
Luther, S. Jeong and M. C. Beard, Acs Nano, 2015, 9, 8157-
8164.
G. P. Li, J. S. Huang, Y. Q. Li, J. X. Tang and Y. Jiang, Nano
Res, 2019, 12, 109-114.
10.
11.
12.
13.
In this report, we exploited hydroxide and sulfide mixed
chalcogenide ligands to replace organic ligands on CdSe@ZnS
QDs. The presence of mixed ligands on the QD surface reduces
QDs aggregation and allows dispersal of QDs in a benign solvent
BA. Alleviating the interaction between the solvent and ligands
suppresses ligand desorption and surface oxidation. As a result,
a luminescent QD film with chalcogenide ligands was realized,
and the QD film can maintain its photoluminescence intensity
Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu,
M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H.
Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. G.
Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr and E. H.
Sargent, Nature Materials, 2014, 13, 822-828.
W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee and S. Lee,
Advanced Materials, 2009, 21, 1690-1694.
Z. J. Ning, H. P. Dong, Q. Zhang, O. Voznyy and E. H.
Sargent, Acs Nano, 2014, 8, 10321-10327.
V. Sayevich, C. Guhrenz, V. M. Dzhagan, M. Sin, M.
Werheid, B. Cai, L. Borchardt, J. Widmer, D. R. Zahn, E.
Brunner, V. Lesnyak, N. Gaponik and A. Eychmuller, Acs
Nano, 2017, 11, 1559-1571.
A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa
and C. B. Murray, J Am Chem Soc, 2011, 133, 998-1006.
G. Gabka, P. Bujak, K. Giedyk, K. Kotwica, A. Ostrowski, K.
Malinowska, W. Lisowski, J. W. Sobczak and A. Pron, Phys
Chem Chem Phys, 2014, 16, 23082-23088.
N. J. L. K. Davis, J. R. Allardice, J. Xiao, A. Karani, T. C.
Jellicoe, A. Rao and N. C. Greenham, Mater Horiz, 2019, 6,
137-143.
14.
15.
16.
even at an annealing temperature of 200
℃. Finally, for the first
time, we prepared a QLED based on all-inorganic-ligand-capped
QDs that shows enhanced current density and luminescence
intensity in comparison to those devices based on organic-
ligand-capped QDs.
17.
18.
This work was supported by the Shanghai International
Cooperation Project (16520720700), Shanghai Key Research
Program (16JC1402100), ShanghaiTech Start-up Funding, 1000
Young Talent Program, National Natural Science Foundation of
China (U1632118, 21571129), and Centre for High-resolution
Electron Microscopy (CħEM), SPST, ShanghaiTech University
under contract No. EM02161943. The authors also thank the
Test Center of Shanghai Tech University and Dr. Peihong Cheng.
19.
20.
21.
22.
R. Klajn, K. J. Bishop and B. A. Grzybowski, Proc Natl Acad
Sci U S A, 2007, 104, 10305-10309.
T. Wang, D. LaMontagne, J. Lynch, J. Zhuang and Y. C. Cao,
Chem Soc Rev, 2013, 42, 2804-2823.
J. J. Park, S. H. Lacerda, S. K. Stanley, B. M. Vogel, S. Kim, J.
F. Douglas, D. Raghavan and A. Karim, Langmuir, 2009, 25,
443-450.
Conflicts of interest
There are no conflicts to declare.
23.
H. Zhang, B. Hu, L. Sun, R. Hovden, F. W. Wise, D. A.
Muller and R. D. Robinson, Nano Lett, 2011, 11, 5356-
5361.
Notes and references
1.
2.
3.
V. Wood and V. Bulovic, Nano Rev, 2010, 1.
24.
25.
W. Ji, H. Shen, H. Zhang, Z. Kang and H. Zhang, Nanoscale,
2018, 10, 11103-11109.
B. S. Mashford, T. L. Nguyen, G. J. Wilson and P.
Mulvaney, J Mater Chem, 2010, 20, 167-172.
Y. Q. Shang and Z. J. Ning, Natl Sci Rev, 2017, 4, 170-183.
Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R.
Manders, J. Xue, P. H. Holloway and L. Qian, Nature
Photonics, 2015, 9, 259-266.
4.
5.
Z. F. He, Y. Liu, Z. L. Yang, J. Li, J. Y. Cui, D. Chen, Z. S. Fang,
H. P. He, Z. Z. Ye, H. M. Zhu, N. N. Wang, J. P. Wang and Y.
Z. Jin, Acs Photonics, 2019, 6, 587-594.
J. Pan, Y. Q. Shang, J. Yin, M. De Bastiani, W. Peng, I.
Dursun, L. Sinatra, A. M. El-Zohry, M. N. Hedhili, A. H.
Emwas, O. F. Mohammed, Z. J. Ning and O. M. Bakr,
Journal of the American Chemical Society, 2018, 140, 562-
565.
6.
X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-
Bermudez, X. Gong, L. N. Quan, J. Fan, Z. Yang, S.
Hoogland, O. Voznyy, Z.-H. Lu and E. H. Sargent, Nat
Photonics, 2018, 12, 159-164.
7.
8.
X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J.
Wang and X. Peng, Nature, 2014, 515, 96-99.
A. Nag, M. V. Kovalenko, J. S. Lee, W. Liu, B. Spokoyny and
D. V. Talapin, J Am Chem Soc, 2011, 133, 10612-10620.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins