Page 7 of 12
ACS Catalysis
(5) (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335-344. (b) Scheue-
ethanol and applying a drop of very dilute suspension on
1
2
3
4
5
6
7
8
rmann, C. J. Chem. Asian J. 2010, 5, 436-451.
carbon-coated grids. The size distribution of the metal
nanoparticles was determined by measuring about 200
random particles on the images. n-hexane or H2O
adsorption experiment was performed at 25 C on a BEL
SORP-max adsorption instrument. The adsorption
(6) (a) Brown, J. F.; Vogt, L. H. J. Am. Chem. Soc. 1965, 87, 4313.
(b) Murugavel, R.; Voigt, A.; Walawalkar, M. G.; Roesky, H. W.
Chem. Rev. 1996, 96, 2205-2536. (c) Li, G.; Wang, L.; Ni, H.;
Pittman, C. U. J. Inorg. Organomet. Polym. 2001, 11, 123-154. (d)
Jeon, M.; Han, J.; Park, J. ACS Catal. 2012, 2, 1539-1549.
(7) (a) Murahashi, S.-I.; Komiya, N.; Terai, H. Angew. Chem.
Int. Ed. 2005, 44, 6931-6933. (b) Murahashi, S.-I.; Nakae, T.; Terai,
H.; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005-11012. (c)
Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem.
Soc. 2003, 125, 15312-15313. (d) Brasche, G.; Buchwald, S. L. Angew.
Chem. Int. Ed. 2008, 47, 1932-1934.
o
amount of n-hexane or H2O was recorded at the saturated
o
vapor pressure of n-hexane (25 C, 20.16 KPa) or H2O (25
oC, 3.169 KPa). Pd surface area was measured by CO
chemisorptions using AutoChem HP 2950 apparatus with
quantitative loop from Micromeritics. The sample was
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
o
first pretreated with 5 vol % H2/Ar at 200 C for 2 h, and
(8) Walsh, R. Acc. Chem. Res. 1981, 14, 246-252.
o
then pure CO was pulsed over the sample at 25 C for
(9) (a) Lee, M.; Ko, S.; Chang, S. J. Am. Chem. Soc. 2000, 122,
12011-12012. (b) Ison, E. A.; Corbin, R. A.; Abu-Omar, M. M. J. Am.
Chem. Soc. 2005, 127, 11938-11939. (c) Tan, S. T.; Kee, J. W.; Fan,
W. Y. Organometallics 2011, 30, 4008-4013. (d) Sattler, W.; Parkin,
G. J. Am. Chem. Soc. 2012, 134, 17462-17465. (e) Kikukawa, Y.;
Kuroda, Y.; Yamaguchi, K.; Mizuno, N. Angew. Chem. Int. Ed.
2012, 51, 2434-2437. (f) Yu, M.; Jing, H.; Fu, X. Inorg. Chem. 2013,
52, 10741-10743. (g) Teo, A. K. L.; Fan, W. Y. Chem. Commun. 2014,
50, 7191-7194. (h) Garcés, K.; Fernández-Alvarez, F. J.; Polo, V.;
Lalrempuia, R.; Pérez-Torrente, J. J.; Oro, L. A. ChemCatChem
2014, 6, 1691-1697. (i) Yu, M.; Jing, H.; Liu, X.; Fu X. Organometal-
lics 2015, 34, 5754-5758. (j) Yap, C. P.; Poh H. T.; Fan W. Y. RSC
Adv. 2016, 6, 5903-5906.
(10) (a) Jeon, M.; Han, J.; Park, J. ChemCatChem 2012, 4,
521-524. (b) Shimizu, K.-i.; Kubo, T.; Satsuma, A. Chem. Eur. J.
2012, 18, 2226-2229. (c) Kamachi, T.; Shimizu, K.-i.; Yoshihiro, D.;
Igawa, K.; Tomooka, K.; Yoshizawa, K. J. Phys. Chem. C 2013, 117,
22967-22973. (d) Mitsudome, T.; Noujima, A.; Mizugaki, T.;
Jitsukawa, K.; Kaneda, K. Chem. Commun. 2009, 5302-5304. (e)
Asao, N.; Ishikawa, Y.; Hatakeyama, N.; Menggenbateer;
Yamamoto, Y.; Chen, M.; Zhang, W.; Inoue, A. Angew. Chem. Int.
Ed. 2010, 49, 10093-10095. (f) John, J.; Gravel, E.; Hagège, A.;
Gacoin, H. Li, T.; Doris, E. Angew. Chem. Int. Ed. 2011, 50,
7533-7536. (g) Li, W.; Wang, A.; Yang, X.; Huang, Y.; Zhang, T.
Chem. Commun. 2012, 48, 9183-9185. (h) Liu, T.; Yang, F.; Li, Y.;
Ren, L.; Zhang, L.; Xu, K.; Wang, X.; Xu, C.; Gao, J. J. Mater.
Chem. A 2014, 2, 245-250. (i) Wang, Y.; Wan, X.-K.; Ren, L.; Su,
H.; Li, G.; Malola, S.; Lin, S.; Tang, Z.; Häkkinen, H.; Teo, B. K;
Wang, Q.-M.; Zheng, N. J. Am. Chem. Soc. 2016, 138, 3278-3281. (j)
Mitschang, F.; Schmalz, H.; Agarwal, S.; Greiner, A. Angew.
Chem. Int. Ed. 2014, 53, 4972-4975. (k) Villemin, E.; Gravel, E.;
Jawale, D. V.; Prakash, P.; Namboothiri, I. N. N.; Doris, E.
Macromol. Chem. Phys. 2015, 216, 2398-2403. (l) Mitsudome, T.;
Arita, S.; Mori, H.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Angew.
Chem. Int. Ed. 2008, 47, 7938-7940. (m) Kisukuri, C. M.; Palmeira,
D. J.; Rodrigues, T. S.; Camargo, P. H. C.; Andrade, L. H.
ChemCatChem 2016, 8, 171-179. (n) Saito, A.; Kinoshita, H.;
Shimizu, K.-i.; Nishina, Y. Bull. Chem. Soc. Jpn. 2016, 89, 67-73.
(11) (a) Yadav, M.; Akita, T.; Tsumori, N.; Xu, Q. J. Mater. Chem.
2012, 22, 12582-12586. (b) Zhao, E. W.; Zheng, H.; Ludden, K.; Xin,
Y.; Hagelin-Weaver, H. E.; Bowers, C. R. ACS Catal. 2016, 6,
974-978. (c) Zhou, Y.; Li, Y.; Shen, W. Chem. Asian J. 2016, 11,
1470-1488.
several times to saturated adsorption. The total amount of
CO adsorbed was measured by assuming a chemisorption
stoichiometry of CO/Pd=1 and a Pd surface atomic density
of 1.27×1019 m−2.21 The dispersion (D) was calculated
according to the formula of D = (surface number of Pd
atoms)/(total number of Pd atoms).
ASSOCIATED CONTENT
The Supporting Information is available free of charge on the
ACS Publication website at DOI: xx.xxxx/acscatalxxxxxxx
Experimental details of the catalyst preparation, TEM
data, FT-IR data, adsorption capacity study, XPS data,
optimization of reaction conditions, kinetic experiments,
spectral parameters, and NMR data of products (PDF)
AUTHOR INFORMATION
Corresponding Author
* Email: yongcao@fudan.edu.cn
* Email: wangyd.sshy@sinopec.com
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This work was supported by National Natural Science
Foundation of China (21273044, 21473035, 91545108), Science
&
Technology Commission of Shanghai Municipality
(16ZR1440-400), SINOPEC (X514005) and the Open project of
State Key Laboratory of Chemical Engineering
(SKL-ChE-15C02).
REFERENCES
(1) (a) Dumesic, J. A.; Huber, G. W.; Boudart, M. In Hand-
book of Heterogeneous catalysis; Ertl, G.; Knozinger, H.; Schüth,
F.; Weitkamp, J., Eds.; Wiley-VCH: Weinheim, 2008; Vol. 1, pp
1-3. (b) Busca, G. Heterogeneous Catalytic Materials: Solid State
Chemistry, Surface Chemistry and Catalytic Behaviour; Elsevier:
Amsterdam, 2014; pp 1-7. c) Munnik, P.; de Jongh, P. E.; de Jong,
K. P. Chem. Rev. 2015, 115, 6687-6718.
(2) (a) Wang, M.; Wang, F.; Ma, J.; Chen, C.; Shi, S.; Xu, J.
Chem. Commun. 2013, 49, 6623-6625. (b) Wang, L.; Xiao, F. S.
ChemCatChem 2014, 6, 3048-3052. (c) Dai, Y.; Liu, S.; Zheng, N. J.
Am. Chem. Soc. 2014, 136, 5583-5586.
(3) Bhaumik, A.; Mukherjee, P.; Kumar, R. J. Catal. 1998, 178,
101-107.
(4) (a) Corma, A.; Esteve, P.; Martı́nez, A. J. Catal. 1996, 161,
11-19. (b) Jing, H.; Guo, Z.; Ma, H.; Evans, D. G.; Duan, X. J. Catal.
2002, 212, 22-32. (c) Gounder, R.; Davis, M. E. J. Catal. 2013, 308,
176-188.
(12) (a) Donnet, J.-B.; Voet, A. Carbon Black-Physics, Chemistry
and Elastomer Reinforcement; Marcel Dekker: New York, 1976;
pp 1-362. (b) Donnet, J.-B.; Bansal, R. C.; Wang, M. J. Carbon
Black-Science and Technology, 2nd ed.; Marcel Dekker: New York,
1993; pp 1-461. (c) Sosa, R. C.; Masy, D.; Rouxhet, P. G. Carbon
1994, 32, 1369-1375.
(13) (a) Bi, Q. Y.; Lin, J. D.; Liu, Y. M.; Du, X. L.; Wang, J. Q.;
He, H. Y.; Cao, Y. Angew. Chem. Int. Ed. 2014, 53, 13583-13587. (b)
Zhu, Q. L.; Tsumori, N.; Xu, Q.; J. Am. Chem. Soc. 2015, 137,
11743-11748. (c) Bi, Q. Y.; Lin, J. D.; Liu, Y. M.; He, H. Y.; Huang,
F. Q.; Cao, Y. Angew. Chem. Int. Ed. 2016, 55, 11849-11853.
ACS Paragon Plus Environment