Paper
Dalton Transactions
+
1
56.9. LC-MS (M + H ) calcd for C18
25 2 2
H N O = 301.19, found 14 K. Wygladacz and E. Bakker, Analyst, 2007, 132, 268.
for C H N O = 301.07. CHN analysis; calcd C, 71.97; H, 15 E. C. V. Butler, Trends Anal. Chem., 1996, 15, 45.
1
8
25 2 2
8
.05; N, 9.33; found C, 71.82; H, 8.19; N, 9.37.
16 S. Jayaraman, L. Teiltler, B. Skalski and A. S. Verkman,
Am. J. Physiol. Cell Physiol., 1999, 277, C1008.
Anion recognition studies
1
7 B. S. Hetzel, The conquest of iodine deficiency: a special
challenge to Australia from Asia, Proc. Nutr. Soc. Austr,
1991, 16, 69.
The anion recognition studies were performed at room temp-
erature, and the solution was shaken before recording absorp-
tion and emission spectra to ensure uniformity. The anion 18 B. Ma, F. Zeng, F. Zheng and S. Wu, Chem.–Eur. J., 2011,
binding ability of receptor 2 in a CH CN media was studied by
17, 14844.
tetrabutyl- 19 Z. He, H. Li and Z. Li, J. Org. Chem., 2010, 75, 4636.
ammonium salt (1 mM) to a standard solution of receptor 2 20 L. Xu, Y. Xu, W. Zhu, Z. Xu, M. Chen and X. Qian, New
0.1 mM, 2 mL) in CH CN and by keeping the solvent ratio
J. Chem., 2012, 36, 1435.
constant throughout the experiment. The binding study was 21 H. Wang, L. Xue and H. Jiang, Org. Lett., 2011, 13, 3844.
3
adding fixed amounts (0.5 equivalent) of
a
(
3
explored by using fluorescence spectroscopy.
22 Z. B. Shang, Y. Wang and W. J. Jin, Talanta, 2009, 78,
64.
23 R.-H. Yang, K.-M. Wang, D. Xiao and X.-H. Yang, Analyst,
000, 125, 1441.
24 Y. Wang, H. Zhu, X. Yang, Y. Dou and Z. Liu, Analyst, 2013,
38, 2085.
3
Stoichiometry determination
2
Consecutively, to determine the stoichiometry of the receptor
−
−
2
·I ion binding, solutions of receptor 2 and the I ion were
1
prepared at ratios of 3.0 : 0.0, 2.7 : 0.3, 2.4 : 0.6, 2.1 : 0.9,
2
2
2
2
5 L.-R. Lin, W. Fang, Y. Yu, R.-B. Huang and L.-S. Zheng,
Spectrochim. Acta, Part A, 2007, 67, 1403.
6 L. J. Fan and W. E. Jones, J. Am. Chem. Soc., 2006, 128,
1
0
.8 : 1.2, 1.5 : 1.5, 1.2 : 1.8, 0.9 : 2.1, 0.6 : 2.4, 0.3 : 2.7 and
.0 : 3.0. These solutions were allowed to stand for 1 h with fre-
quent shaking in between. The fluorescence spectra were
recorded for each mixture. The plot of [HG] versus X was used
to determine the stoichiometry of the complex formed. The
fluorescence intensity of the emission peak maximum at
6784.
i
7 R. M. Ramadan, M. S. A. Hamza and S. A. Ali, J. Coord.
Chem., 1998, 43, 31–39.
8 These data can be obtained free of charge from The Cam-
bridge Crystallographic Data centre via www.ccdc.cam.ac.
uk/data_request/cif.
3
41 nm was used for the stoichiometry calculations. The
concentration of [HG] was calculated by the equation of
HG] = (ΔF/F ) [H] and X = Mole Fraction = [H] /[H] + [G]
[
0
i
v
v
v
.
2
3
9 K. Ghosh and T. Sen, Tetrahedron Lett., 2008, 49, 7204.
0 V. Muthalagu, N. Rajagopal and V. Suresh, Macromolecules,
2006, 39, 8303.
Notes and references
3
1 H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc.,
1949, 71, 2703; G. Scatchard, The Attractions of proteins
for small molecules and ions, Ann. N. Y. Acad. Sci., 1949,
51, 660; K. A. Connors, in Binding constants, The measure-
ments of molecular complex stability, Wiley, New York,
1987.
1
(a) N. Singh and D. O. Jang, Org. Lett., 2007, 9, 1991;
b) D. O. Youn, N. Singh, M. J. Kim and D. O. Jang, Org.
Lett., 2011, 13, 3024.
S. O. Kang, S. Llinares, V. W. Day, V. W. James and
K. B. James, Chem. Soc. Rev., 2010, 39, 3980.
(
2
3
4
P. D. Beer and P. A. Gale, Angew. Chem., Int. Ed., 2001, 40, 32 P. Job, Ann. Chim., 1928, 9, 113.
4
86.
33 V. K. Bhardwaj, N. Aliaga-Alcalde, M. Corbella and
G. Hundal, Inorg. Chim. Acta, 2010, 363, 97.
34 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens.
Matter, 1988, 37, 785; P. J. Hay and W. R. Wadt, J. Chem.
Phys., 1985, 82, 270; P. J. Hay and W. R. Wadt, J. Chem.
Phys., 1985, 82, 299.
J. L. Sessler, P. A. Gale and W. S. Cho, Anion Receptor Chem-
istry, RSC, Cambridge, 2006.
P. A. Gale, Coord. Chem. Rev., 2001, 213, 79.
M.-L. Lehaire, R. Scopelliti, H. Piotrowski and K. Severin,
Angew. Chem., Int. Ed., 2002, 41, 1419.
5
6
7
8
9
P. D. Beer and J. Cadman, Coord. Chem. Rev., 2000, 205, 35 Z. Otwinowski and W. Minor, Methods in Enzymology, in
1
31.
F. P. Schmidtchen and M. Berger, Chem. Rev., 1997, 97,
609.
P. A. Gale, Coord. Chem. Rev., 2001, 213, 79.
Macromolecular Crystallography, Part A, ed. C. W. Carter Jr.
and R. M. Sweet, Academic Press, 1997, vol. 276,
pp. 307–326.
1
36 G. M. Sheldrick, SHELXS-97; G. M. Sheldrick, Acta Crystal-
logr., Sect. A: Fundam. Crystallogr., 2008, 64, 112.
37 G. M. Sheldrick, SHELXL-2013; G. M. Sheldrick, Acta Crys-
tallogr., Sect. A: Fundam. Crystallogr., 2008, 64, 112.
38 L. J. Farrugia, WinGX-Version 1.70.01; J. Appl. Crystallogr.,
1999, 32, 837.
1
0 H. T. Ngo, X. Liu and K. A. Jolliffe, Chem. Soc. Rev., 2012,
1, 4928.
1 M. Haldimann, B. Zimmerli, C. Als and H. Gerber, Clin.
Chem., 1998, 44, 817.
4
1
1
2 G. Aumont and J. C. Tressol, Analyst, 1986, 111, 841.
1
3 F. Jalali, M. J. Rajabi, G. Bahrami and M. Shamsipur, Anal. 39 International Tables for Crystallography, Kluwer Academic
Sci., 2005, 21, 1533. Publishers, Dordrecht, 1992, vol. C.
3588 | Dalton Trans., 2014, 43, 3584–3588
This journal is © The Royal Society of Chemistry 2014