Organic Process Research & Development
Article
3.24 (s, 3H), 2.57 (s, 3H); 13C NMR (125 MHz, CDCl3) δ
139.80, 137.27, 133.78, 130.03, 126.72, 124.93, 41.66, 16.16;
ESI MS m/z 202 [M]+.
A.; Perez, S.; Galiano, S.; Juanenea, L.; Erviti, O.; Frigola, C.; Aldana,
I.; Monge, A. Eur. J. Med. Chem. 2004, 39, 49−58. (e) Ashton, W. T.;
Dong, H.; Sisco, R. M.; Doss, G. A.; Leiting, B.; Patel, R. A.; Wu, J. K.;
Marsilio, F.; Thornberry, N. A.; Weber, A. E. Bioorg. Med. Chem. Lett.
2004, 14, 859−863. (f) Maryanoff, B. E.; McComsey, D. F.; Costanzo,
M. J.; Yabut, S. C.; Lu, T.; Player, M. R.; Giardino, E. C.; Damiano, B.
P. Chem. Biol. Drug Design 2006, 68, 29−36. (g) Deswal, S.; Roy, N.
Eur. J. Med. Chem. 2007, 42, 463−470. (h) Kercher, T.; Rao, C.;
Bencsik, J. R.; Josey, J. A. J. Comb. Chem. 2007, 9, 1177−1187.
(i) Zhao, S.-H.; Berger, J.; Clark, R. D.; Sethofer, S. G.; Krauss, N. E.;
Brothers, J. M.; Martin, R. S.; Misner, D. L.; Schwab, D.; Alexandrova,
L. Bioorg. Med. Chem. Lett. 2007, 17, 3504−3507. (j) Chen, Y.; Cheng,
D.; Tio, C.; Kagan, N.; Eisennagel, S.; Dasgupta, M.; Tomczuk, B.;
Bone, R.; Huebert, N. Biopharm. Drug Dispos. 2008, 29, 127−138.
(k) Byun, Y.; Vogel, S. R.; Phipps, A. J.; Carnrot, C.; Eriksson, S.;
Tiwari, R.; Tjarks, W. Nucleosides, Nucleotides Nucleic Acids 2008, 27,
244−260. (l) Hanessian, S.; Simard, D.; Bayrakdarian, M.; Therrien,
E.; Nilsson, I.; Fjellstrom, O. Bioorg. Med. Chem. Lett. 2008, 18, 1972−
1976. (m) Elliot, D.; Henshaw, E.; MacFaul, P. A.; Morley, A. D.;
Newham, P.; Oldham, K.; Page, K.; Rankine, N.; Sharpe, P.; Ting, A.;
Wood, C. M. Bioorg. Med. Chem. Lett. 2009, 19, 4832−4835.
(2) (a) Josey, A. D. U.S. Patent 4,683,091, 1987. (b) Josey, A. D. U.S.
Patent 4,783,285, 1988.
2-Methanesulfonylbenzenesulfonyl Chloride (8).2,7,10
A flask was equipped with a coldfinger condenser operating at
−78 °C as a gas outlet bubbler. The flask was charged with
glacial acetic acid (7.5 L), water (640 mL, 35.4 mol), and 2-
thiomethylphenyl methyl sulfone (6, 2.31 kg, 11.4 mol,
contaminated at 5% with intermediate 4). Chlorine gas
(about 6 equiv) was introduced into the flask over 5 h through
the gas inlet tube below the surface of the reaction mixture at a
rate which kept the internal reaction temperature from
exothermic heating in the 45−55 °C range. [Note: During
this time, TLC analysis of the reaction mixture showed the
formation of a more polar component (Rf = 0.16; 1:1 ethyl
acetate/hexanes), which later converted to the less polar
product component.] The chlorine flow was then terminated,
and the reaction mixture was heated to 50 °C and stirred for 3.5
h, after which it was cooled to room temperature over 12 h. Ice
and water (10 L) were added, and the resulting slurry was
stirred for 1 h, after which the precipitate was collected by
filtration. The solids were then dried overnight (30 mmHg
vacuum, 50 °C) to produce 8 as a white solid (1.57 kg, 57%
yield): TLC Rf (1:1 ethyl acetate/hexanes) = 0.54; mp (DSC)
136 °C (lit.10 136−137 °C); IR (KBr) 2108, 1570, 1426, 1372,
(3) With sodium methanethiolate: (a) Chianelli, D.; Testaferri, L.;
Tiecco, M.; Tingoli, M. Synthesis 1982, 475−478. (b) Kemmitt, T.;
Levason, W. Organometallics 1989, 8, 1303−1308. (c) Zeller, W. E.
Methanethiol In e-EROS Encyclopedia of Reagents for Organic Synthesis;
John Wiley & Sons, Ltd: Chichester, UK, 2001. With other metal
alkanethiolates: (d) Landini, D.; Montanari, F.; Rolla, F. J. Org. Chem.
1983, 48, 604−605. (e) Hay, J. V. Pestic. Sci. 1990, 29, 247−261.
(f) Clayden, J.; Cooney, J. J. A.; Julia, M. J. Chem. Soc., Perkin Trans. 1
1995, 7−14.
1
1323 cm−1; H NMR (300 MHz, CDCl3) δ 8.42 (dt, J = 1.4,
7.5 Hz, 2H), 7.98−7.26 (m, 2H), 3.41 (s, 3H); 13C NMR (75
MHz, CDCl3) δ 136.04, 134.66, 133.09, 131.61, 45.02; ESI MS
m/z 255 [M + H]+. Anal. Calcd. For C7H7ClO4S2: C, 33.01; H,
2.77. Found: C, 33.12; H, 2.67. HPLC analysis (Keystone
Scientific Kromasil C18 column, 4.6 mm × 150 mm, 25 °C, 1:1
acetonitrile/water, 1.0 mL/min flow, retention time = 5.22
min) showed one peak, with a total purity of 99.1% (area %).
The spectral data were also identical to those of a sample
obtained commercially. The filtrate was further diluted with
water (30 L), and the resulting slurry was stirred for 30 min,
after which the precipitate was collected by filtration and
washed with water (1 L). The solids were then dried overnight
(30 mmHg vacuum, 50 °C) to produce 2-chlorophenyl methyl
sulfone (4) as a light-yellow solid (47 g, 41% recovery from the
second step).
(4) Representative citation for oxidation using sodium hypochlorite
with phase transfer catalyst: (a) Ramsden, J. H.; Drago, R. S.; Riley, R.
J. Am. Chem. Soc. 1989, 111, 3958−3961. Representative citations for
oxidation using sodium hypochlorite: (b) Wood, A. E.; Travis, E. G. J.
Am. Chem. Soc. 1928, 50, 1226−1228. (c) Khurana, J. M.; Panda, A.;
Ray, A.; Gogia, A. Org. Prep. Proced. Int. 1996, 28, 234−237.
Representative citations for oxidation using peracetic acid (H2O2/
HOAc): (d) Beck, J. R.; Yahner, J. A. J. Org. Chem. 1978, 43, 2048−
2052. (e) Bergman, A.; Wachtmeister, C. A. J. Labelled Compd.
Radiopharm. 1987, 24, 925−930. (f) Tiecco, M.; Tingoli, M.;
Testaferri, L.; Chianelli, D.; Maiolo, F. Synthesis 1982, 6, 478−480.
Representative citations for oxidation using potassium peroxymono-
sulfate (Oxone): (g) Kennedy, R. J.; Stock, A. M. J. Org. Chem. 1960,
25, 1901−1906. (h) Trost, B. M.; Curran, D. P. Tetrahedron Lett.
1981, 22, 1287−1290. Representative citations for oxidation using
potassium peroxymonosulfate (Oxone) with bentonite clay: (i) Hirano,
M.; Tomaru, J.; Morimoto, T. Chem. Lett. 1991, 3, 523−524.
(j) Hirano, M.; Tomaru, J.; Morimoto, T. Bull. Chem. Soc. Jpn. 1991,
64, 3752−3754.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(5) Su, W. Tetrahedron Lett. 1994, 35, 4955−4958.
(6) General reviews on oxidative chlorination methods: (a) Taylor;
P. C. Comprehensive Organic Functional Group Transformations;
Pergamon: Elsevier Science Ltd., 1995, Vol. 2, 674. (b) Hudlicky,
M. Oxidations in Organic Chemistry; ACS Monograph 186, American
Chemical Society, Washington, DC, 1990, 250. Representative
citations for oxidative chlorination using N-chlorosuccinimide
(NCS): (c) Nishiguuchi, A.; Maeda, K.; Miki, S. Synthesis 2006,
4131−4134. (b) Xia, M.; Chen, S.; Bates, D. K. J. Org. Chem. 1996, 61,
9289−9292. (d) See also the use of 2,4-dichloro-5,5-dimethyl
hydantoin (DCDMH): Pu, Y.-M.; Christesen, A.; Ku, Y.-Y.
Tetrahedron Lett. 2010, 51, 418−421. (e) Representative citation
for oxidative chlorination using sodium hypochlorite: Wright, S. W.;
Hallstrom, K. N. J. Org. Chem. 2006, 71, 1080−1084. Leading
citations using chlorine gas in aqueous acidic solutions: (f) Roblin, R.
O.; Clapp, J. W. J. Am. Chem. Soc. 1950, 72, 4890−4892. (g) Conrow,
R. E.; Dean, D.; Zinke, P. W.; Deason, M. E.; Sproull, S. J. Org. Process
Res. Dev. 1999, 3, 114−120. (h) Wang, C.; Hamilton, C.; Meister, P.;
ACKNOWLEDGMENTS
■
We thank AMRI colleagues Mary Ellen Buckley and Maria
Maychack for help in retrieving archived files and materials, and
Drs. David Lathbury and Keith Barnes for critical review of the
manuscript.
REFERENCES
■
(1) (a) Soll, R. M.; Lu, T.; Tomczuk, B.; Illig, C. R.; Fedde, C.;
Eisennagel, S.; Bone, R.; Murphy, L.; Spurlino, J.; Salemme, F. R.
Bioorg. Med. Chem. Lett. 2000, 10, 1−4. (b) Urbahns, K.; Harter, M.;
Vaupel, A.; Albers, M.; Schmidt, D.; Bruggemeier, U.; Stelte-Ludwig,
B.; Gerdes, C.; Tsujishita, H. Bioorg. Med. Chem. Lett. 2003, 13, 1071−
1074. (c) Tomczuk, B.; Lu, T.; Soll, R. M.; Fedde, C.; Wang, A.;
Murphy, L.; Crysler, C.; Dasgupta, M.; Eisennagel, S.; Spurlino, J.;
Bone, R. Bioorg. Med. Chem. Lett. 2003, 13, 1495−1498. (d) Moreno,
554
dx.doi.org/10.1021/op2002744 | Org. Process Res. Dev. 2012, 16, 550−555