component reaction-based (MCR) approaches to R-hydroxy-
â-aminocarboxylic acid and amide derivatives. These ver-
satile, stable intermediates readily undergo oxidation to
ketoamide targets.
Utilizing the appropriate N-R-protected amino aldehyde
precursors 2 (Figure 2), we recently disclosed novel varia-
Figure 1. Representative examples of biologically active R-keto-
amides: members of the cyclotheonamide (Ct) class of marine
natural products.
D-isoleucine subunits. They are potent, slow-binding inhibi-
tors of several important trypsin-like serine proteases includ-
ing thrombin (factor IIa), factor Xa, trypsin, plasmin, and
tissue plasminogen activator.9 From this group, CtA (1a) and
CtE (1e) express the most potent thrombin inhibitory activity
with Ki values of e1 and 2.9 nM, respectively. Such potent
biological activity is derived from the key pharmacophore,
an electrophilic R-ketoargininamide group, which docks into
the S1 pocket of serine proteases and engages the catalytic
triad serine hydroxyl group to form a hemiketal (TSA)
intermediate, which effectively but reversibly inhibits the
enzyme.
Previous routes10 to the cyclotheonamides proceeded via
construction of individual protected amino acid subunits,
peptide couplings, macrocyclization, and late stage oxidation
to install the reactive ketoamide residue. In all cases,
protected R-hydroxy-â-homoarginine derivatives served as
the key L-R-ketohomoarginine precursors. They were pre-
pared by multistep homologation-hydrolysis approaches
from arginine or ornithine precursors via cyanohydrin10c,d (6-
11 steps), orthothioformate,10a,e (7-8 steps) or furyllithium
addition-oxidation10b (5 steps) protocols. Our interest in the
design and synthesis of novel classes of R-ketoamides as
small molecule inhibitors of serine proteases, including prolyl
endopeptidase,11 thrombin,12 factor Xa,3a,13 urokinase,14 and
NS3A hepatitis C protease,4 led us to investigate multiple-
Figure 2. Passerini MCR strategy for the construction of R-hy-
droxy-â-amino amides 4 and 6 and their potential elaboration into
the R-ketoamide subunit 7. PG denotes N-protecting group.
tions of the atom-economical Passerini reaction15 for the
direct production of either R-acyloxy-â-amino amides 32,16
or R-hydroxy-â-amino amide derivatives 4.2,16,17 In our hands,
(11) Total synthesis of the PEP inhibitor Eurystatin A: Owens, T. D.;
Araldi, G. L.; Nutt, R. F.; Semple, J. E. Tetrahedron Lett. 2001, 42, 6271.
(12) Thrombin inhibitors: (a) Reiner, J. E.; Lim-Wilby, M. S.; Brunck,
T. K.; Uong, T. H.; Goldman, E. A.; Abelman, M. A.; Nutt, R. F.; Semple.
J. E.; Tamura S. Y. Bioorg. Med. Chem. Lett. 1999, 9, 895. (b) Semple, J.
E. Tetrahedron Lett. 1998, 39, 6645. (c) Semple, J. E.; Rowley, D. C.;
Brunck, T. K.; Uong, T. H.; Minami, N. K.; Owens, T. D.; Tamura, S. Y.;
Goldman, E. A.; Siev, D. V.; Ardecky, R. J.; Carpenter, S. H.; Ge, Y.;
Richard, B. M.; Hakanson, K.; Tulinsky, A.; Nutt, R. F.; Ripka, W. C. J.
Med. Chem. 1996, 39, 4531.
(13) FXa inhibitors: (a) Tamura, S. Y.; Levy, O. E.; Reiner, J. E.; Uong,
T. H.; Goldman, E. A.; Brunck, T. K.; Semple, J. E. Bioorg. Med. Chem.
Lett. 2000, 10, 745. (b) Ho, J. Z.; Levy, O. E.; Gibson, T. S.; Nguyen, K.;
Semple, J. E. Bioorg. Med. Chem. Lett. 1999, 9, 3459. (c) Tamura, S. Y.;
Goldman, E. A.; Bergum, P. W.; Semple, J. E. Bioorg. Med. Chem. Lett.
1999, 9, 2573.
(8) (a) CtA and CtB: Fusetani, N.; Matsunaga, S.; Matsumoto, H.;
Takebayashi, Y. J. Am. Chem. Soc. 1990, 112, 7053. (b) CtC, CtD, and
CtE: Nakao, Y.; Matsunaga, S.; Fusetani, N. Bioorg. Med. Chem. 1995, 3,
1115. (c) CtE2 and CtE3: Nakao, Y.; Oku, N.; Matsunaga, S.; Fusetani,
N. J. Nat. Prod. 1998, 61, 667.
(9) (a) Maryanoff, B. E.; Qui, X.; Padmanabhan, K. P.; Tulinsky, A.;
Almond, H. R.; Andrade-Gordon, P.; Greco, M. N.; Kauffman, J. A.;
Nicolaou, K. C.; Liu, A.; Brungs, P. H.; Fusetani, N. Proc. Natl. Acad. Sci.
U.S.A. 1993, 90, 8048. (b) Lewis, S. D.; Ng, A. S.; Baldwin, J. J.; Fusetani,
N.; Naylor, A. M.; Shafer, J. A. Thrombosis Res. 1993, 70, 173.
(10) Cyclotheonamides, total synthesis: (a) Bastiaans, H. M. M.; van
der Baan, J. L.; Ottenheijm, H. C. J. J. Org. Chem. 1997, 62, 3880. (b)
Deng, J.; Hamada, Y.; Shioiri, T. Tetrahedron Lett. 1996, 37, 2261. (c)
Maryanoff, B. E.; Greco, M. N.; Zhang, H. C.; Andrade-Gordon, P.;
Kauffman, J. A.; Nicolaou, K. C.; Liu, A.; Brungs, P. H. J. Am. Chem.
Soc. 1995, 117, 1225. (d) Wipf, P.; Kim, H. J. Org. Chem. 1993, 58, 5592.
(e) Hagihara, M.; Schreiber, S. L. J. Am. Chem. Soc. 1992, 114, 6570.
(14) uPA inhibitors: (a) Tamura, S. Y.; Weinhouse, M. I.; Roberts, C.
A.; Goldman, E. A.; Masukawa, K.; Anderson, S. M.; Cohen, C. R.;
Bradbury, A. E.; Bernadino, V. T.; Dixon, S. A.; Ma, M. G.; Nolan, T. G.;
Brunck, T. K. Bioorg. Med. Chem. Lett. 2000, 10, 983.
(15) Passerini reaction: (a) Passerini, M. Gazz. Chim. Ital. 1921, 51,
126. (b) Passerini, M.; Ragni, G. Gazz. Chim. Ital. 1931, 61, 964. (c)
Authoritative review: Ugi, I. In Isonitrile Chemistry; Ugi, I., Ed.; Academic
Press: New York, 1971; Chapter 7. (d) TiCl4 activation: Carofiglio, T. et
al. Organometallics 1993, 12, 2726. (e) Seebach, D.; Adam, G.; Gees, T.;
Schiess, M.; Weigand, W. Chem. Ber. 1988, 121, 507. (f) Seebach, D.;
Schiess, M. HelV. Chim. Acta 1983, 66, 1618.
(16) Semple, J. E.; Levy, O. E. PCT Int. Appl. WO 0035868 A2, June,
2000.
3302
Org. Lett., Vol. 3, No. 21, 2001