1
50
A.G. Damu et al. / Phytochemistry 52 (1999) 147±151
1
1
7
2
520; H NMR (DMSO-d ): d 12.68 (1H, s, OH-5),
acid was identi®ed by co-PC (BAW). The sugar in the
aq. layer was identi®ed as D-glucose by co-PC (BAW).
6
.87 (1H, dd, J = 7.9, 1.7 Hz, H-6') 7.73 (2H, m, H-
1, 61), 7.68 (1H, d, J = 16.0 Hz, H-71), 7.56 (1H,
ddd, J = 8.5, 8.0, 1.7 Hz, H-4'), 7.42 (4H, m, H-3', 31,
3.5. Alkaline hydrolysis of compounds 1 and 2
4
(
(
1, 51), 7.26 (1H, ddd, J = 8.0, 7.9, 0.9 Hz, H-5') 7.01
A soln of the glycoside (5 mg) in 1% KOH (5 ml)
was re¯uxed for 2 h. The reaction mixt was acidi®ed
with 1N HCl and extracted with Et O followed by n-
1H, s, H-3), 6.67 (1H, d, J = 16.0 Hz, H-81) 6.59
1H, s, H-6), 5.35 (1H, d, J = 7.9 Hz, H-10), 5.08 (1H,
2
dd, J = 9.2, 9.2 Hz, H-30), 3.91 (3H, s, OMe-7), 3.80
BuOH. The Et O extract was washed with H O, evapd
2
2
(
2
3H, s, OMe-8), 3.71 (1H, m, H-60a), 3.55 (4H, m, H-
to dryness, redissolved in MeOH (0.5 ml) and sub-
mitted to PC when trans-cinnamic acid was identi®ed,
while the residue obtained from the n-BuOH extract
was cryst. from MeOH to yield skullcap¯avone I 2'-O-
b-D-glucoside (4 mg), mp. 260±2628.
1
3
0, 40, 50, 60b); C NMR in Table 1.
3
.3.2. Skullcap¯avone I 2'-O-b-D-(20-E-
cinnamoyl)glucopyranoside (2)
Yellow amorphous powder (MeOH); mp 196±1978,
[a] � 0.158 (MeOH, c 4.0); HRFABMS (positive
mode) m/z: 607.1807 ([M+H] ; C H O +H
2
5
D
+
3
2
30 12
Acknowledgements
requires, 607.1815); FABMS (positive mode) m/z
(
+
rel. int): 607 [M+H] (100), 477 (1), 315 (44); UV
MeOH
max
BJ acknowledges Council of Scienti®c and Industrial
Research, New Delhi for ®nancial assistance. We are
grateful to Mr J. P. Brouard, Laboratoire de Chimie
des Substances Naturelles, MNHN, Paris and Michel
Â
Becchi, Centre de Spectrometrie de masse du, CNRS,
Lyon, France for providing mass spectral data.
l
(
(
nm (log e): 268 (4.45), 300 sh (3.94), 348 sh
3.51); (NaOMe) 278, 380; (NaOAc) 268, 300 sh, 348;
NaOAc+H BO ) 268, 300 sh, 348; (AlCl ) 275, 325
3
sh, 362; (AlCl +HCl) 265, 270, 305, 360; IR n
cm : 3457 (OH), 1710 (C1O ester), 1609 (C1O),
3
3
KBr
max
3
�
1
1
1
586, 1511, 1448; H NMR (DMSO-d ): d 12.68 (1H,
6
s, OH-5), 7.66 (1H, dd, J = 7.5, 1.8 Hz, H-6'), 7.57
1H, ddd, J = 8.5, 7.5, 1.8 Hz, H-4'), 7.41 (1H, dd,
J = 8.5, 0.9 Hz, H-3'), 7.38 (2H, m, H-21, 61), 7.35
1H, m, H-41), 7.31 (2H, m, H-31, 51), 7.23 (1H, ddd,
(
References
(
J = 7.5, 7.5, 0.9 Hz, H-5'), 7.21 (1H, d, J = 16.0 Hz,
H-71), 6.41 (2H, s, H-3, 6), 6.32 (1H, d, J = 16.0 Hz,
H-81), 5.21 (1H, d, J = 8.1 Hz, H-10), 4.94 (1H, dd,
J = 9.5, 8.1 Hz, H-20), 3.80 (3H, s, OMe-7), 3.77 (1H,
m, H-60a), 3.57 (3H, s, OMe-8), 3.53 (3H, m, H-30, 50,
Agrawal, P. K., & Bansal, M. C. (1989). Flavonoid glycosides. In P.
K. Agrawal, Carbon-13 NMR of ¯avonoids (p. 313). Amsterdam:
Elsevier.
Aritomi, M. (1963). Terni¯orin, a new ¯avonoid compound in ¯ow-
ers of Clematis terni¯ora var. robusta. Chemical and
Pharmaceutical Bulletin, 11, 1225.
1
3
6
0b), 3.31 (1H, m, H-40); C NMR in Table 1.
Birkofer, L., Kaiser, C., Hillges, B., & Becker, F. (1969). Sugar esters
V. NMR spectroscopic studies of o-acyl glycoses. Annals of
Chemistry, 725, 196.
3.3.3. Skullcap¯avone I 2'-O-b-D-glucopyranoside (3)
Dorman, D. E., & Roberts, J. D. (1970). NMR spectroscopy. C-13
spectra of some pentose and hexose aldopyranoses. Journal of
American Chemical Society, 92, 1355.
Yellow needles (MeOH); mp 260±2628; FABMS
positive mode) m/z (rel. int.): 477 [M+H] (46), 315
+
(
[
+
13
M+H� glucosyl] (100); C NMR in Table 1; MS,
Gamble, J. S. (1956). Flora of the presidency of Madras, vol. 2 (p.
1
UV, IR and H NMR data were identical with pub-
lished data (Gupta et al., 1996).
1049). Calcutta: Botanical Survey of India.
Giessman, T. A. (1962). Spectral properties of ¯avonoid compounds.
In The chemistry of ¯avonoid compounds (p. 111). London:
Pergamon Press.
3.3.4. Andrographidine C (4)
Govindachari, T. R., Parthasarathy, P. C., Pai, B. R.,
Kalyanaraman, P. S. (1968). Chemical investigation of A. sepylli-
&
Pale yellow needles (MeOH); mp 115±1168, FABMS
positive mode) m/z (rel. int): 461 [M+H] (46); 299
+
(
[
polia: isolation and structure of serpyllin,
Tetrahedron, 24, 7027.
a new ¯avone.
+
1
M+H� glucosyl] (100); MS, UV, IR and H and
1
3
Gupta, K. K., Taneja, S. C., & Dhar, K. L. (1996). Flavonoid glyco-
side of A. paniculata. Indian Journal of Chemistry, 35B, 512.
Gupta, K. K., Taneja, S. C., Dhar, K. L., & Atal, C. K. (1983).
Flavonoids of A. paniculata. Phytochemistry, 22, 314.
C NMR data were identical with published data
Kuroyanagi et al., 1987).
(
13
3.4. Acid hydrolysis of compounds 1 and 2
Iinuma, M., Matsuura, S., & Kusuda, K. (1980). C NMR spectral
studies on polysubstituted ¯avonoid. I. C-13 MNR spectra of ¯a-
vones. Chemical and Pharmaceutical Bulletin, 28, 708.
10 mg of the glycoside was re¯uxed with 2N HCl
2.5 ml) in MeOH for 2 h. The yellow ppt was ®ltered
Jalal, M. A. F., Overton, K. H., & Rycroft, D. S. (1979). Formation
of three new ¯avones by dierentiating callus cultures of A.
Paniculata. Phytochemistry, 18, 149.
(
and recryst. from MeOH to give pale yellow needles of
skullcap¯avone I (3 mg), mp 254±2558. The ®ltrate
was extracted with EtOAc in which trans-cinnamic
Kamerling, J., De Bie, M., & Vliegenthart, J. (1972). A PMR study
of the anomeric protons in pertrimethylsilyl oligosaccharides, a