ChemComm
Communication
Fig. 3 Fluorescence spectra of 5-hydroxylysine-containing peptide 12 reacting
with probe 10. Dilution 100Â with (a) pyridine acetate buffer; (b) water.
Fig. 5 Fluorescence spectra of peptides 12–15 at different concentra-
tions reacting with probe 10. Dilution 100Â with water. [10] = 5 mM.
its fluorescence turn-on properties. The current limitation
residing in the reaction medium (i.e. pyridine acetate buffer)
would restrict its application scope. Our future efforts will be
oriented to the improvement of probe 10 enabling detection of
5-hydroxylysine-containing peptides/proteins under physio-
logical conditions.
We thank the General Research Fund (HKU703811P) of the
Research Grants Council and Seed Funding from the University
of Hong Kong (201210159054) for the financial support.
Notes and references
Scheme 4 5-Hydroxylysine peptide 12 reacting with 10.
1
C. T. Walsh, S. Garneau-Tsodikova and G. J. Gatto Jr., Angew. Chem.,
Int. Ed., 2005, 44, 7342–7372.
2
C. T. Walsh, Posttranslational Modification of Proteins: Expanding
Nature’s Inventory, Roberts and Co., Englewood, CO, 2006.
R. E. Moellering and B. F. Cravatt, Science, 2013, 341, 549–553.
J. Du, Y. Zhou, X. Su, J. J. Yu, S. Khan, H. Jiang, J. Kim, J. Woo,
J. H. Kim, B. H. Choi, B. He, W. Chen, S. Zhang, R. A. Cerione,
J. Auwerx, Q. Hao and H. Lin, Science, 2011, 334, 806–809.
Y. Y. Yang, J. M. Ascano and H. C. Hang, J. Am. Chem. Soc., 2010, 132,
3
4
5
3
640–3641.
6
7
B. R. Martin and B. F. Cravatt, Nat. Methods, 2009, 6, 135–138.
B. W. Zaro, Y. Y. Yang, H. C. Hang and M. R. Pratt, Proc. Natl. Acad.
Sci. U. S. A., 2011, 108, 8146–8151.
8
9
M. Grammel, P. Luong, K. Orth and H. C. Hang, J. Am. Chem. Soc.,
2011, 133, 17103–17105.
X. Bao, Q. Zhao, T. Yang, Y. M. E. Fung and X. D. Li, Angew. Chem.,
Int. Ed., 2013, 52, 4883–4886.
1
1
0 M. Yamauchi and M. Sricholpech, Essays Biochem., 2012, 52, 113–133.
1 K. I. Kivirikko, R. Myllyl ¨a and T. Pihlajaniemi, in Post-translational
modifications of proteins, ed. J. J. Harding and M. J. C. Grabbe,
CRC Press, Boca Raton, FL, 1992, pp. 1–51.
Fig. 4 Fluorescence spectra of peptides 12–15 reacting with probe 10 at
2
hours.
1
2 Y. Wang, A. Xu, C. Knight, L. Y. Xu and G. J. Cooper, J. Biol. Chem.,
2002, 277, 19521–19529.
To evaluate the selectivity of 10 for reacting with 5-hydroxylysine-
1
3 C. J. Webby, A. Wolf, N. Gromak, M. Dreger, H. Kramer, B. Kessler,
M. L. Nielsen, C. Schmitz, D. S. Butler, J. R. Yates III, C. M.
Delahunty, P. Hahn, A. Lengeling, M. Mann, N. J. Proudfoot,
C. J. Schofield and A. B o¨ ttger, Science, 2009, 325, 90–93.
4 (a) Y. Zhang, C. Xu, H. Y. Lam, C. L. Lee and X. Li, Proc. Natl. Acad.
Sci. U. S. A., 2013, 110, 6657–6662; (b) X. Li, H. Y. Lam, Y. Zhang and
C. K. Chan, Org. Lett., 2010, 12, 1724–1727; (c) C. Xu, H. Y. Lam,
Y. Zhang and X. Li, Chem. Commun., 2013, 49, 6200–6202.
5 C. J. Gray, C. J. S. J. D’Silva, J. Boukouvalas and S. A. Barker, Enzyme
Microb. Technol., 1983, 5, 137–142.
containing peptides, we measured the fluorescence intensity
changes for the control peptides (13–15) upon addition of
probe 10. The peptides did not cause any significant changes
in the fluorescence emission intensity (Fig. 4).
We further studied the detection limits of the analytes, by
measuring the fluorescence intensity of peptides 12–15 at
concentrations from 0.01 mM to 5 mM. The result indicates
that the probe can detect a hydroxylysine-containing peptide at
a concentration below 1 mM (Fig. 5).
1
1
1
1
1
6 K.-S. Lee, T.-K. Kim, J. H. Lee, H.-J. Kim and J.-I. Hong, Chem.
Commun., 2008, 6173–6175.
7 Q. Zeng, A. Toro, J. B. Patterson, W. S. Wade, Z. Zubovics, Y. Yang
and Z. Wu, US Pat., US20130116247 A1, 2013.
In summary, we have devised and synthesized an
umbelliferone-based fluorogenic probe, which has allowed us
8 Peptides with N-terminal serine or threonine are expected to react
as well.
1
8
to selectively detect 5-hydroxylysine-containing peptides via
5300 | Chem. Commun., 2014, 50, 5298--5300
This journal is ©The Royal Society of Chemistry 2014