works, such as diketone,4 crown ether,5 polymer based
ligands,6 and nanoparticles.7 However, some available
Mg2þ sensors have difficulty in distinguishing Mg2þ and
Ca2þ,8 so it is still interesting and of importance to design a
highly selective and sensitive fluorescent sensor that can
recognize Mg2þ without the interference from other metal
prepared according to reported procedures.11 CS1 and CS2
could be obtained by condensation of o-phenylenediamine
and (R,R)-1,2-diaminocyclohexane with 8-formyl-7-hydro-
xyl-4-methyl-coumarin via a nucleophilic additionꢀelimina-
tion reaction in 81.9% and 86.8% yields, respectively.
The fluorescence response behaviors of sensors CS1 and
CS2 on various metal ions have been investigated. CS1 and
CS2 can display weak and broad emission bands centered
at 550 and 510 nm, respectively. Figure 1a and 1b show the
fluorescencespectra of CS1 and CS2 (10 μM in THF) upon
the addition of various metal ions in aqueous solution with
the excitation at 360 and 352 nm. As shown in Figure 1a,
obvious fluorescence enhancement could be observed as
high as 4.7-fold (SI 4a) upon the addition of Mg2þ at a 1:1
molar ratio, and the addition of other selected metal ions,
ions, especially Ca2þ
.
Salen-based ligands have the potentially tetradentate
N2O2 donor and can form stable complexes with various
metal ions. There are many reports on these salen-based
fluorescent sensors for metal ions detection.9 As a better
fluorophore, coumarin derivatives have been widely used
for constructing sensory systems due to their desirable
photophysical properties with a large Stock shift and
visible emission wavelength.10 In this paper, we designed
two coumarin salen-based ligands as fluorescence sensors
for Mg2þ recognition. The fluorescence intensities of the
two sensors are enhanced by mixing Naþ and Mg2þ
together, and the fluorescence color is bright green, which
can be easily detected by the naked eye. The results indicate
that two coumarin salen-based sensors can exhibit high
sensitivity and selectivity for Mg2þ recognition in the
presence of Naþ as the coexisting cation.
suchasLiþ, Naþ, Kþ, Ca2þ, Fe3þ, Co2þ, Ni2þ, Agþ, Hg2þ
,
and Pb2þ, causes almost no fluorescence response. But
Cr3þ, Ni2þ, and Cd2þ cause limited fluorescence quench-
ing under the same conditions (I/I0 < 0.7). Meanwhile,
Cu2þ can lead to almost complete quenching of CS1
(Supporting Information, SI 4a), which can be attributed
to the energy or electron-transfer reactions arisen from the
strong metalꢀligand orbital interaction upon the forma-
tion of binding metal complexes.12 In addition, the max-
imum emission wavelength of CS1 appears remarkably
blue-shifted from 550 to 490 nm. As shown in Figure 1b,
Mg2þ (10 μM) can lead to the pronounced fluorescence
enhancement of CS2 as high as 9.8 (SI 4b) at a 1:1 molar
ratio. Moreover, a blue shift is also observed from 510 to
The synthesis protocol of two sensors is outlined (SI,
Scheme 1). 8-formyl-7-hydroxy-4-methylcoumarin was
(4) (a) Suzuki, Y.; Komatsu, H.; Ikeda, T.; Saito, N.; Araki, S.;
Citterio, D.; Hisamoto, H.; Kitamura, Y.; Kubota, T.; Nakagawa, J.;
Oka, K.; Suzuki, K. Anal. Chem. 2002, 74, 1423–1428. (b) Shoda, T.;
Kikuchi, K.; Kojima, H.; Urano, Y.; Komatsu, H.; Suzuki, K.; Nagano,
T. Analyst 2003, 128, 719–723. (c) Komatsu, H.; Iwasawa, N.; Citterio,
D.; Suzuki, Y.; Kubota, T.; Tokuno, K.; Kitamura, Y.; Oka, K.; Suzuki,
K. J. Am. Chem. Soc. 2004, 126, 16353–16360. (d) Kim, H. M.; Yang,
P. R.; Seo, M. S.; Yi, J. S.; Hong, J. H.; Jeon, S. J.; Ko, Y. G.; Lee, K. J.;
Cho, B. R. J. Org. Chem. 2007, 72, 2088–2096. (e) Kim, H. M.; Jung, C.;
Cho, B. R. Angew. Chem., Int. Ed. 2007, 46, 3460–3463. (f) Valeur, B.;
Leray, I. Coord. Chem. Rev. 2000, 205, 3–40.
(5) (a) Farruggia, G.; Iotti, S.; Prodi, L.; Montalti, M.; Zaccheroni,
N.; Savage, P. B.; Trapani, V.; Sale, P.; Wolf, F. I. J. Am. Chem. Soc.
2006, 128, 344–350. (b) Liu, Y.; Han, M.; Zhang, H. Y.; Yang, L. X.;
Jiang, W. Org. Lett. 2008, 10, 2873–2876. (c) Kim, J.; Morozumi, T.;
Nakamura, H.; Nakamura, H. Org. Lett. 2007, 9, 4419–4422. (d)
Bronson, R. T.; Montalti, M.; Prodi, L.; Zaccheroni, N.; Lamb,
R. D.; Dalley, N. K.; Izatt, R. M.; Bradshaw, J. S.; Savage, P. B.
Tetrahedron 2004, 60, 11139–11144.
(6) (a) Ding, A. L.; Pei, J.; Yu, W. L.; Lai, Y. H.; Huang, W. Thin
Solid Films 2002, 417, 198–201. (b) Pei, J.; Yu, W. L.; Ding, A. L.; Yu,
W. L.; Lai, Y. H. Macromol. Rapid Commun. 2002, 23, 21–25.
(7) Park, E. J.; Brasuel, M.; Behrend, C.; Philbert, M. A. Anal. Chem.
2003, 75, 3784–3791.
(8) (a) Pesco, J.; Salmon, J.; Vigo, J.; Viallet, P. Anal. Biochem. 2001,
290, 221–231. (b) Kim, J.; Morozumi, T.; Kurumatani, N.; Nakamura,
H. Tetrahedron Lett. 2008, 49, 1984–1987. (c) Dubonosov, A. D.;
Minkin, V. I.; Bren, V. A.; Shepelenko, E. N.; Tsukanov, A. V.;
Starikov, A. G.; Borodkin, G. S. Tetrahedron 2008, 64, 3160–3167. (d)
Gromov, S. P.; Ushakov, E. N.; Fedorova, O. A. J. Org. Chem. 2003, 68,
6115–6125.
(9) (a) Cozzi, P. G. Chem. Soc. Rev. 2004, 33, 410–421. (b) Pucci, D.;
Aiello, I.; Bellusci, A.; Crispini, A.; Ghedini, M.; Deda, M. L. Eur. J.
Inorg. Chem. 2009, 4274–4281. (c) Chu, Z. L.; Huang, W.; Wang, L.;
Gou, S. H. Polyhedron 2008, 27, 1079–1092. (d) Xu, Y.; Meng, J.; Meng,
L. X.; Dong, Y.; Cheng, Y. X.; Zhu, C. J. Chem.;Eur. J. 2010, 16,
12898–12903.
(10) (a) Trenor, S. R.; Shultz, A. R.; Love, B. J.; Long, T. E. Chem.
Rev. 2004, 104, 3059–3077. (b) Suresh, M.; Das, A. Tetrahedron Lett.
2009, 50, 5808–5812. (c) Komatsu, K.; Urano, Y.; Kojima, H.; Nagano,
T. J. Am. Chem. Soc. 2007, 129, 13447–13454. (d) Lim, N. C.; Schuster,
J. V.; Porto, M. C. Inorg. Chem. 2005, 44, 2018–2030. (e) Ray, D.;
Bharadwaj, P. K. Inorg. Chem. 2008, 47, 2252–2254. (f) Lim, N. C.;
Figure 1. Selectivity of sensors (a) CS1 and (b) CS2 toward Mg2þ
and other metal ions: fluorescence spectra of the ligandꢀmetal
ion complexes.
€
Bruckner, C. Chem. Commun. 2004, 1094–1095. (g) Hanshaw, R. G.;
Hilkert, S. M.; Jiang, H. Tetrahedron Lett. 2004, 45, 8721–8724.
Org. Lett., Vol. 13, No. 9, 2011
2253