4
12. Pan, X-Q.; Lei, M-Y.; Zou, J-P.; Zhang, W. Tetrahedron Lett. 2009,
50, 347.
13. Kaufmann, H. P.; Kulchler, K. A. Eur J. Inorg. Chem. 1934, 67, 944.
14. Kaufmann, H. P.; Oehring, W. Eur J. Inorg. Chem. 1926, 59, 187.
15. Takagi, K.; Takachi, H.; Sasaki, K. J. Org. Chem. 1995, 60, 6552.
Based on these investigations and previous literature, the
plausible mechanism is proposed (Scheme 2). Potassium
persulphate would decompose to generate very strong oxidant
•-
sulphate radical anion (SO4 ), which in turn oxidizes the aromatic
compound to form radical cation intermediate I. Simultaneous
nucleophilic addition of thiocyanate anion to the cation
intermediate would lead to the formation of radical intermediate
II. Ultimately the loss of hydrogen radical from II would afford
the desired compound 3a. Alternatively, further oxidation of the
intermediate II will lead to the formation of cation intermediate
III. Finally, the elimination of H+ from this intermediate would
afford the desired product 3a.
16. Yang, Y. F.; Zhou, Y.; Wang, J. R.; Liu, L.; Guo, Q. X. Chin. Chem.
Lett. 2006, 17, 1283.
17. Still, I. W. J.; Watson, I. D. J. Synth. Commun. 2001, 31, 1355.
18. Sun, N.; Che, L.; Mo, W.; Hu, B.; Shen, Z.; Hu, X. Org. Biomol. Chem.
2015, 13, 691.
19. (a) Mitra, S.; Ghosh, M.; Mishra, S.; Hajra, A. (b) Fan, W.; Yang, Q.;
Xu, F.; Li, P. J. Org. Chem. 2014, 79, 10588.
20. (a)Kaufmann, H. P.; Oehring, W. Ber, 1926, 59B, 187;(b)
Likhosherstov, M. V.; Petrov, A. A. J. Gen. Chem. (USSR) 1933, 3,
183; (c) Kaufmann, H. P.; Kulchler, K. A. Ber, 1934, 67B, 944; (d)
Kita, Y.; Takeda, Y.; Okuno, T.; Egi, M.;IIo, K.;Kawaguchi, K.; Akai,
S. Chem. Pharm. Bull. 1997, 45, 1887; (c) Prakash, O.; Kaur, H.;
Pundeer, R.; Dhillon, R. S.; Singh, S. P. Synth. Commun. 2003, 33,
4037.
21. (a) Wang, H.; Guo, L-N; Duan, X-H. Org. Lett. 2013, 15, 5254; (b) Lin,
J-P.; Zhang, F-H.; Long, Y-Q. Org. Lett. 2014, 16, 2822; (c) Siddaraju,
Y.; Lamani, M.; Prabhu, K. R. J. Org. Chem. 2014, 79, 3856; (d)
Shichao, L.; Gong, Y.; Zhou, D. J. Org. Chem. 2015, 80, 9336; (e)
Yang, H; Duan, X-H.; Zhao, J-F.; Guo, L-N. Org. Lett. 2015, 17, 1998;
(e) Gesu, A.; Pozzoli, C.; Torre, E.; Aprile, S.; Pirali, T. Org. Lett.
2016, 18, 1992; (f) Yang, D.; Yan, K.; Wei, W.; Li, G.; Lu, S.; Zhao,
C.; Tian, L.; Wang, H. J. Org. Chem. 2015, 80, 11073.
22. General Procedure for the synthesis of Thiocyanatophenols,
Thiocyanatoindoles and Thiocyanatoanilines: In an oven dried round
bottom flask containing a mixture of 2,6-dimethyl phenol 1a (100 mg,
0.82 mmol), ammonium thiocyanate 2 (94 mg, 1.23 mmol) and
potassium persulphate (443 mg, 1.64 mmol) in DCM (2 mL) were
stirred for 4 h. Progress of the reaction was monitored by TLC. Upon
completion, the reaction mixture was filtered through sintered funnel
containing silica and sodium sulphate. The Filtrate was concentrated
under reduced pressure to afford the crude product 3a. This was purified
by column chromatography (EtOAc:Hexane) to furnish the pure
compound 3a as a white solid (139 mg, 95% yield). Similar procedure
was used for the thiocyanation of anisoles, anilines and heterocycles.
23. (a) Minisci, F.; Citterio, A. Acc. Chem. Res. 1983, 16, 27; (b) Hey, D.
H.; Jones, G. H.; Perkins, M. J. J. C. S. Perkin I, 1972, 118.
24. (a) Kita, Y.; Tohma, H.; Hatanaka, K.; Takada, T.; Fujata, S.; Mitoh, S.;
Sakurai, H.; Oka, S. J. Am. Chem. Soc. 1994, 116, 3684. (b)
Sankararaman, S.; Haney, W. A.; Kochi, J. K. J. Am. Chem. Soc. 1987,
109, 7824.
Conclusions
In conclusion, we have demonstrated the transition-metal-free
regioselective and monoselective direct thiocyantion of phenols,
anilines and other aromatics under mild conditions. The use of
commercially available and inexpensive K2S2O8 has been
explored for the thiocyantion in an efficient manner. Most
importantly, this protocol proved to be scalable on a multi gram
quantity. The desired products were obtained in good to excellent
yields and a wide range of functional groups were tolerated.
Initial understandings suggested that reaction proceeded via
radical cation intermediate. This protocol presents a new and
viable path to access thiocyanated aromatics and precursors of
bioactive molecules.
Acknowledgments
T. B. M. and T. M. K thank CSIR, New Delhi for the fellowship.
Financial support from IISER-Pune is gratefully acknowledged
by the authors to carry out this research work.
References and notes
1. (a) Guy, R. G. The Chemistry Cyanates and their Thioderivatives, Part
2, ed. S. Patai, John Wiley and Sons, New York, 1977, Chap 18,
819;(b) Owens, R. G. In Fungicide: An Advanced Treatise, Torgeson,
D.C. ed. Academic Press: New York, 1967, Chapter 5, p 147; (c)
Houmam, A.; Hamed, E. M.; Still, I. W. J. J. Am. Chem. Soc., 2003,
125, 7258; (d) Mackinnon, D. L.; Farrell, A. P. Environ. Toxicol. Chem.
1992, 11, 1541.
2. Wei, Z. L.; Kozikowski, A. P. J. Org. Chem. 2003, 68, 9116.
3. Verkruijsse, H. D.; Brandsma, L. Synthesis 1991, 818
4.
(a) Kitagawa, I.; Ueda, Y.; Kawasaki, T.; Mosettig, E. J. Org. Chem.
1963, 46, 3335; (b) Toste, F. D.; LaRaronde, F.; Still, I. W. J.
Tetrahedron Lett. 1995, 36, 2949.
5. (a) Riemschneider, R.; Wojahn, F.; Orlick, G. J. Am. Chem. Soc. 1951,
73, 5905; (b) Riemschneider, R. J. Am. Chem. Soc. 1956, 78, 844.
6. Prabhu, K. R.; Ramesha, A. R.; Chandrasekaran, S. J. Org. Chem. 1995,
60, 7142.
7. a) Wood, J. L. Organic Reactions, Vol. 3; Wiley, New York, 1967, 240
b) Kelly, T R.; Kim, M. H.; Certis, A. D. M. J. Org. Chem. 1993, 58,
5855.
8. (a) Grant, M. S.; Snyder, H. R. J. Am. Chem. Soc., 1960, 82, 2742; (b)
Nair, V.; Nair, L. G. Tetrahedron Lett. 1998, 39, 4585; (c) Nair, V.;
George, T. G.; Nair, L. G.; Panicker, S. B. Tetrahedron Lett. 1999, 40,
1195;(d) Yadav, J. S.; Reddy, B. V. S.; Murali Krishna, B. B. Synthesis
2008, 2008, 3779; (e) Toste, F. D.; De Stefano, V.; Still, I. W. J. Synth.
Commun. 1995, 25, 1277; (f) Nikoofar, K. Chem. Sci. Trans. 2013, 2,
691; (g) Fan, W.; Yang, Q.; Xu, F.; Li, P. J. Org. Chem. 2014, 79,
10588; (h) Zhu, D.; Chang, D.; Shi, L. Chem. Commun. 2015, 51, 7180;
(i) Khazaei, A.; Zolfigol, M. A.; Mokhlesi, M.; Pirveysian, M. Can. J.
Chem. 2012, 90, 427; (j) Wu, G.; Liu, Q.; Shen, Y. Wu, W.; Wu, L.
Tetrahedron Lett. 2005, 46, 5831.
9. Uemura, S.; Onoe, A.; Okazaki, H.; Okano, M. Bull. Chem. Soc. Jpn.
1975, 48, 619.
10. Taylor, E. C.; Kienzle, F. Synthesis 1972, 38.
11. Bacon, R. G. R.; Guy, R. G. J. Chem. Soc. 1960, 318.