Running title
Chin. J. Chem.
–
7+
7
(CF
Eu
3
SO
4
3
)] 533.7084, found 533.7081.
(OTf)12: To a suspension of ligand L3 (4.01 mg,
7001-7045; (d) Fujita, M.; Tominaga, M.; Hori, A., Therrien, B. Coordination
assemblies from a Pd(II)-cornered square complex, Acc. Chem. Res. 2005, 38,
369-378; (e) Yoshizawa, M.; Klosterman, J.K., Fujita, M. Functional molecular
flasks: new properties and reactions within discrete, self-assembled hosts,
Angew. Chem. Int. Ed. 2009, 48, 3418-3438; (f) Holliday, B.J., Mirkin, C.A.
Strategies for the Construction of Supramolecular Compounds through
Coordination Chemistry, Angew. Chem. Int. Ed. 2001, 40, 2022-2043; (g)
Smulders, M.M.; Riddell, I.A.; Browne, C., Nitschke, J.R. Building on
architectural principles for three-dimensional metallosupramolecular
construction, Chem. Soc. Rev. 2013, 42, 1728-1754; (h) Chen, L.; Chen, Q.; Wu,
M.; Jiang, F., Hong, M. Controllable coordination-driven self-assembly: from
discrete metallocages to infinite cage-based frameworks, Acc. Chem. Res.
(L3)
4
-
3
-3
4
1
.0210 mmol, 1 equiv.) and Eu(OTf)
3
(2.89 mg, 4.8310 mmol,
.2 equiv) in 1 mL MeNO at 50°C for 1.5 h, the turbid suspension
of ligands gradually turned clear. The solid progressively dissolved
to give a resulting homogeneous yellow solution. H NMR showed
the quantitative formation of Eu
spectra could not be assigned due to the poor solubility of this
complex. m.p.>300 °C. HRMS for Eu (L3) (OTf)12: The following
2
1
4 4
(L3) (OTf)12. However, its NMR
4
4
picked signals are those at the high intensities. m/z calcd for
–
–
–
–
–
4+
5+
6+
7+
8+
[
[
[
[
M-4(CF
M-5(CF
M-6(CF
M-7(CF
M-8(CF
3
3
3
3
3
SO
SO
SO
SO
SO
3
3
3
3
3
)]
)]
)]
)]
1444.2558, found 1444.2545; calcd for
1125.4139, found 1125.4129; calcd for
913.1864, found 913.1853; calcd for
761.3093, found 761.3083; calcd for
2015, 48, 201-210.
[6] (a) Li, X.Z.; Zhou, L.P.; Yan, L.L.; Yuan, D.Q.; Lin, C.S., Sun, Q.F. Evolution of
–
9+
[
)] 647.6517, found 647.6509; [M-9(CF
3
SO
3
)]
Luminescent Supramolecular Lanthanide M2nL3n Complexes from Helicates
and Tetrahedra to Cubes, J. Am. Chem. Soc. 2017, 139, 8237-8244; (b) Jing, X.;
He, C.; Yang, Y., Duan, C. A metal-organic tetrahedron as a redox vehicle to
encapsulate organic dyes for photocatalytic proton reduction, J. Am. Chem.
Soc. 2015, 137, 3967-3974; (c) Hamacek, J.; Poggiali, D.; Zebret, S.; El Aroussi,
B.; Schneider, M.W., Mastalerz, M. Building large supramolecular
nanocapsules with europium cations, Chem. Commun. 2012, 48, 1281-1283.
–
10+
5
59.0289, found 559.0286; calcd for [M-10(CF
found 488.2311.
3
SO
3
)] 488.2308,
Supporting Information
The supporting information for this article is available on the
WWW under https://doi.org/10.1002/cjoc.2018xxxxx.
[
7] (a) Bünzli, J.-C.G., Piguet, C. Lanthanide-Containing Molecular and
Supramolecular Polymetallic Functional Assemblies, Chem. Rev. 2002, 102,
897-1928; (b) Butler, S.J., Parker, D. Anion binding in water at lanthanide
Acknowledgement (optional)
1
centres: from structure and selectivity to signalling and sensing, Chem. Soc.
Rev. 2013, 42, 1652-1666; (c) Barry, D.E.; Caffrey, D.F., Gunnlaugsson, T.
Lanthanide-directed synthesis of luminescent self-assembly supramolecular
structures and mechanically bonded systems from acyclic coordinating organic
ligands, Chem. Soc. Rev. 2016, 45, 3244-3274; (d) Sabbatini, N.; Guardigli, M.,
Lehn, J.M. Luminescent Lanthanide Complexes as Photochemical
Supramolecular Devices, Coordin. Chem. Rev. 1993, 123, 201-228.
This work was supported by the NSFC (Grant Nos.
2
1825107, 21601183, 2017J05037), the Strategic Priority
Research Program of the Chinese Academy of Sciences
Grant No. XDB20000000).
(
References
[
1] (a) Fiedler, D.; Leung, D.H.; Bergman, R.G., Raymond, K.N. Selective
[8] El Aroussi, B.; Zebret, S.; Besnard, C.; Perrottet, P., Hamacek, J. Rational
design of a ternary supramolecular system: self-assembly of pentanuclear
lanthanide helicates, J. Am. Chem. Soc. 2011, 133, 10764-10767.
[9] Wang, W.; Wang, Y.X., Yang, H.B. Supramolecular transformations within
discrete coordination-driven supramolecular architectures, Chem. Soc. Rev.
2016, 45, 2656-2693.
Molecular Recognition, C−H Bond Activation, and Catalysis in Nanoscale
Reaction Vessels, Acc. Chem. Res. 2005, 38, 349-358; (b) Wiester, M.J.;
Ulmann, P.A., Mirkin, C.A. Enzyme mimics based upon supramolecular
coordination chemistry, Angew. Chem. Int. Ed. 2011, 50, 114-137.
[2] (a) Liu, C.L.; Zhou, L.P.; Tripathy, D., Sun, Q.F. Self-assembly of stable
luminescent lanthanide supramolecular M cages with sensing properties
4
L
6
[10] Zarra, S.; Clegg, J.K., Nitschke, J.R. Selective assembly and disassembly of
toward nitroaromatics, Chem. commun. 2017, 53, 2459-2462; (b) Zhang, K.;
Xie, X.; Li, H.; Gao, J.; Nie, L.; Pan, Y.; Xie, J.; Tian, D.; Liu, W.; Fan, Q.; Su, H.;
Huang, L., Huang, W. Highly Water-Stable Lanthanide–Oxalate MOFs with
Remarkable Proton Conductivity and Tunable Luminescence, Adv.Mater. 2017,
a water-soluble Fe10L15 prism, Angew. Chem. Int. Ed. 2013, 52, 4837-4840.
[11] Stephenson, A.; Argent, S.P.; Riis-Johannessen, T.; Tidmarsh, I.S., Ward,
M.D. Structures and dynamic behavior of large polyhedral coordination cages:
an unusual cage-to-cage interconversion, J. Am. Chem. Soc. 2011, 133,
858-870.
29, 1701804; (c) Liu, C.L.; Zhang, R.L.; Lin, C.S.; Zhou, L.P.; Cai, L.X.; Kong, J.T.;
Yang, S.Q.; Han, K.L., Sun, Q.F. Intraligand Charge Transfer Sensitization on
Self-Assembled Europium Tetrahedral Cage Leads to Dual-Selective
Luminescent Sensing toward Anion and Cation, J. Am. Chem. Soc. 2017, 139,
[12] Lusby, P.J.; Muller, P.; Pike, S.J., Slawin, A.M. Stimuli-responsive reversible
assembly of 2D and 3D metallosupramolecular architectures, J. Am. Chem. Soc.
2009, 131, 16398-16400.
1
2474-12479.
[13] Han, M.; Michel, R.; He, B.; Chen, Y.S.; Stalke, D.; John, M., Clever, G.H.
Light-triggered guest uptake and release by a photochromic coordination cage,
Angew. Chem. Int. Ed. 2013, 52, 1319-1323.
[14] Sorensen, A.; Castilla, A.M.; Ronson, T.K.; Pittelkow, M., Nitschke, J.R.
Chemical signals turn on guest binding through structural reconfiguration of
triangular helicates, Angew. Chem. Int. Ed. 2013, 52, 11273-11277.
[15] Scherer, M.; Caulder, D.L.; Johnson, D.W., Raymond, K.N. Triple
Helicate—Tetrahedral Cluster Interconversion Controlled by Host–Guest
Interactions, Angew. Chem. Int. Ed. 1999, 38, 1587-1592.
[3] Li, X.Z.; Zhou, L.P.; Yan, L.L.; Dong, Y.M.; Bai, Z.L.; Sun, X.Q.; Diwu, J.; Wang,
S.; Bunzli, J.C., Sun, Q.F. A supramolecular lanthanide separation approach
based on multivalent cooperative enhancement of metal ion selectivity, Nat.
Commun. 2018, 9, 547-556.
[4] (a) Bunzli, J.C. Lanthanide luminescence for biomedical analyses and
imaging, Chem. Rev. 2010, 110, 2729-2755; (b) Zhou, Z.; Liu, J.; Rees, T.W.;
Wang, H.; Li, X.; Chao, H., Stang, P.J. Heterometallic Ru-Pt metallacycle for
two-photon photodynamic therapy, PNAS. 2018, 115, 5664-5669; (c) Stang,
P.J.,
Olenyuk,
B.
Self-Assembly,
Symmetry,
and
Molecular
[16] Georges, J. Lanthanide-sensitized luminescence and applications to the
determination of organic analytes. A review, Analyst. 1993, 118, 1481-1486.
[17] Ma, Y., Wang, Y. Recent advances in the sensitized luminescence of
organic europium complexes, Coordin. Chem. Rev. 2010, 254, 972-990.
[18] (a) Bünzli, J.-C.G. On the design of highly luminescent lanthanide
complexes, Coordin. Chem. Rev. 2015, 293-294, 19-47; (b) Amoroso, A.J., Pope,
S.J. Using lanthanide ions in molecular bioimaging, Chem. Soc. Rev. 2015, 44,
4723-4742.
Architecture: Coordination as the Motif in the Rational Design of
Supramolecular Metallacyclic Polygons and Polyhedra, Acc. Chem. Res. 1997,
3
[
1
0, 502-518.
5] (a) Caulder, D.L., Raymond, K.N. Supermolecules by Design, Acc. Chem. Res.
999, 32, 975-982; (b) Chakrabarty, R.; Mukherjee, P.S., Stang, P.J.
Supramolecular coordination: self-assembly of finite two- and
three-dimensional ensembles, Chem. Rev. 2011, 111, 6810-6918; (c) Cook,
T.R., Stang, P.J. Recent Developments in the Preparation and Chemistry of
Metallacycles and Metallacages via Coordination, Chem. Rev. 2015, 115,
[19] Guo, X.Q.; Zhou, L.P.; Cai, L.X., Sun, Q.F. Self-assembled bright
luminescent lanthanide-organic polyhedra for ratiometric temperature
Chin. J. CT hhe i ms .a2r 0t i1c 9l e, 3i 7s , pX rX oX t-e cX t Xe Xd by co p©y r 2i g0 h1 9t . SAI Ol lCr,i gC hA tS s, Sr he as ne gr hv ae i ,d &. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
www.cjc.wiley-vch.de
5