80
P.S. Dementyev et al. / Journal of Photochemistry and Photobiology A: Chemistry 222 (2011) 77–80
isotope production. In this sense CETFS does not differ from dCETFS
as well as from other silicon fluorides.
[10] Y. Shimizu, Y. Kawamura, M. Uematsu, M. Tomita, T. Kinno, N. Okada, M. Kato,
H. Uchida, M. Takahashi, H. Ito, H. Ishikawa, Y. Ohji, H. Takamizawa, Y. Nagai,
K.M. Itoh, J. Appl. Phys. 109 (2011) 036102.
[11] H. Hayashi, T. Itahashi, K.M. Itoh, L.S. Vlasenko, M.P. Vlasenko, Phys. Rev. B 80
(2009) 045201.
[12] Yasuo Shimizu, M. Kohei, K.M. Itoh, Thin Solid Films 508 (2006) 160.
[13] K.M. Itoh, J. Kato, F. Uemura, A.K. Kaliteyevskii, O.N. Godisov, G.G. Devyatych,
A.D. Bulanov, A.V. Gusev, I.D. Kovalev, P.G. Sennikov, H.-J. Pohl, N.V. Abrosimov,
H. Riemann, Jpn. J. Appl. Phys. 42 (2003) 6248.
[14] A.V. Gusev, A.D. Bulanov, Inorg. Mater. 44 (2008) 1395.
[15] E.E. Haller, Semiconductors 44 (2010) 841.
[16] J.L. Lyman, B.E. Newman, T. Noda, H. Suzuki, J. Phys. Chem. A 103 (1999) 4227.
[17] J. Makowe, O.V. Boyarkin, T.R. Rizzo, J. Phys. Chem. A 106 (2002) 5221.
[18] M. Polianski, O.V. Boyarkin, T.R. Rizzo, V.M. Apatin, V.B. Laptev, E.A. Ryabov, J.
Phys. Chem. A 107 (2003) 8578.
4. Conclusion
CETFS readily dissociates under infrared irradiation. The reac-
tion has a molecular mechanism, which allows of conducting an
isotopically selective process. High enrichment of 30Si is realizable
by one stage. In whole IR MPD parameters of CETFS are bet-
ter than those of dCETFS. However, if one consider the practical
implementation of the silicon MLIS technology, it is necessary to
determine the substance cost and its correlation to the cost of the
gas-centrifugal production.
[19] A. Yokoyama, H. Ohba, M. Hashimoto, K. Katsumata, H. Akagi, T. Ishii, A. Ohya,
S. Arai, Appl. Phys. B 79 (2004) 883.
[20] H. Ohba, H. Akagi, K. Katsumata, M. Hashimoto, A. Yokoyama, Jpn. J. Appl. Phys.
47 (2008) 8379.
[21] P.V. Koshlyakov, S.R. Gorelik, E.N. Chesnokov, O.S. Aseev, A.A. Rakhymzhan, A.K.
Petrov, Photochem. Photobiol. 85 (2009) 901.
[22] P.V. Koshlyakov, P.S. Dementyev, S.R. Gorelik, E.N. Chesnokov, A.K. Petrov, Appl.
Phys. B 97 (2009) 625.
[23] P.S. Dementyev, unpublished results.
Probably, the combination of a molecular photoreaction with
advanced laser schemes, such as a multi-frequency excitation, can
give an excellent isotopic selectivity, even for 29Si isotope.
The elimination reaction is likely to be of interest from the
dynamical point of view. To clarify whether the reaction is con-
certed an ultrafast photodynamical study is needed.
[24] V. Aleksa, A. Gruodis, P. Klaeboe, C.J. Nielsen, K. Herzog, R. Salzer, G.A. Guirgis,
J.R. Durig, J. Mol. Struct. 482–483 (1999) 563.
[25] G.V. Motzarev, R.V. Dzhagazpanyan, V.R. Rosenberg, S.B. Bardenshtein, V.I. Kol-
basov, T.T. Tarasova, Russ. J. Appl. Chem. 41 (1968) 2509 (in Russian).
[26] Y. Zhao, N.E. Schultz, D.G. Truhlar, J. Chem. Theory Comput. 2 (2006) 364.
[27] (a) T.H. Dunning Jr., J. Chem. Phys. 90 (1989) 1007;
(b) D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 98 (1993) 1358.
[28] (a) G.D. Purvis III, R.J. Bartlett, J. Chem. Phys. 76 (1982) 1910;
(b) K. Raghavachari, G.W. Trucks, J.A. Pople, M. Head-Gordon, Chem. Phys. Lett.
157 (1989) 479.
Acknowledgments
We thank the Siberian Branch of the Russian Academy of Sci-
ences for financial support (Grant No. 52/2009). A.S.N. is also
grateful to the program of the Russian Government “Research
and educational personnel of innovative Russia” (Contract No.
14.740.11.0722). The computing time on NKS-160 cluster has been
provided by the Siberian Supercomputer Centre.
[29] C. Møller, M.S. Plesset, Phys. Rev. 46 (1934) 618.
[30] K.A. Peterson, T.H. Dunning Jr., J. Chem. Phys. 117 (2002) 10548.
[31] (a) M. Douglas, N.M. Kroll, Ann. Phys. (NY) 82 (1974) 89;
(b) B.A. Hess, Phys. Rev. A32 (1985) 756;
(c) B.A. Hess, Phys. Rev. A33 (1986) 3742;
Appendix A. Supplementary data
(d) W.A. de Jong, R.J. Harrison, D.A. Dixon, J. Chem. Phys. 114 (2001) 48.
[32] (a) K. Ishida, K. Morokuma, A. Kormornicki, J. Chem. Phys. 66 (1977) 2153;
(b) C. Gonzalez, H.B. Schlegel, J. Chem. Phys. 90 (1989) 2154;
(c) C. Gonzalez, H.B. Schlegel, J. Phys. Chem. 94 (1990) 5523.
[33] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Peters-
son, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.
Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P.
Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Strat-
mann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich,
A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari,
J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Ste-
fanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith,
M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. John-
son, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision E.01,
Gaussian, Inc., Wallingford CT, 2004.
Supplementary data associated with this article can be found, in
References
[1] J.W. Ager III, E.E. Haller, Phys. Status Solidi A 203 (2006) 3550.
[2] H. Watanabe, C.E. Nebel, S. Shikata, Science 324 (2009) 1425.
[3] O. Moutanabbir, D. Isheim, D.N. Seidman, Y. Kawamura, K.M. Itoh, Appl. Phys.
Lett. 98 (2011) 013111.
[4] O. Moutanabbir, S. Senz, Z. Zhang, U. Gösele, Nano Today 4 (2009) 393.
[5] G. Zhang, B. Li, Nanoscale 2 (2010) 1058.
[6] C.W. Chang, A.M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li,
A. Majumdar, A. Zettl, Phys. Rev. Lett. 97 (2006) 085901.
[7] N. Vandecasteele, M. Lazzeri, F. Mauri, Phys. Rev. Lett. 102 (2009) 196801.
[8] M. Kohei, Itoh, Solid State Commun. 133 (2005) 747.
[9] M.R. Rahman, M.P. Vlasenko, L.S. Vlasenko, E.E. Haller, K.M. Itoh, Solid State
Commun. 150 (2010) 2275.