Beilstein J. Org. Chem. 2019, 15, 1371–1378.
13.Okuno, E.; Hiraoka, S.; Shionoya, M. Dalton Trans. 2010, 39,
14.Nishikawa, M.; Kume, S.; Nishihara, H. Phys. Chem. Chem. Phys.
15.Samanta, S. K.; Schmittel, M. J. Am. Chem. Soc. 2013, 135,
16.Samanta, S. K.; Rana, A.; Schmittel, M. Angew. Chem., Int. Ed. 2016,
17.Biswas, P. K.; Saha, S.; Paululat, T.; Schmittel, M. J. Am. Chem. Soc.
18.Samanta, D.; Paul, I.; Schmittel, M. Chem. Commun. 2017, 53,
19.Goswami, A.; Pramanik, S.; Schmittel, M. Chem. Commun. 2018, 54,
20.Chen, L.-J.; Chen, S.; Qin, Y.; Xu, L.; Yin, G.-Q.; Zhu, J.-L.; Zhu, F.-F.;
Zheng, W.; Li, X.; Yang, H.-B. J. Am. Chem. Soc. 2018, 140,
21.Mittal, N.; Özer, M. S.; Schmittel, M. Inorg. Chem. 2018, 57,
22.Paul, I.; Mittal, N.; De, S.; Bolte, M.; Schmittel, M. J. Am. Chem. Soc.
23.Murphy, R. B.; Pham, D.-T.; White, J. M.; Lincoln, S. F.;
Johnston, M. R. Org. Biomol. Chem. 2018, 16, 6206–6223.
24.Wood, D. M.; Meng, W.; Ronson, T. K.; Stefankiewicz, A. R.;
Sanders, J. K. M.; Nitschke, J. R. Angew. Chem., Int. Ed. 2015, 54,
heteroleptic complexation motifs (HETPYP-I and hetero-sand-
wich complexation at DABCO). Within a selected library of
binding guests, DABCO is the only one effecting the intercon-
version. Due to the fact, that the interconversion is accompa-
nied by a diagnostic change in the fluorescence spectra, the
present system represents a supramolecular reporter for the
selective detection of DABCO. It is thus a rare example of
DABCO sensing by luminescence [41].
Supporting Information
Supporting Information File 1
Experimental details and characterization data.
Acknowledgements
We are indebted to the Deutsche Forschungsgemeinschaft for
funding (Schm 647/20-2) and the University of Siegen for
continued support.
ORCID® iDs
25.Bloch, W. M.; Abe, Y.; Holstein, J. J.; Wandtke, C. M.; Dittrich, B.;
Clever, G. H. J. Am. Chem. Soc. 2016, 138, 13750–13755.
26.Cera, L.; Schalley, C. A. Chem. Sci. 2014, 5, 2560–2567.
27.Lal Saha, M.; Schmittel, M. Org. Biomol. Chem. 2012, 10, 4651–4684.
References
1. De, S.; Mahata, K.; Schmittel, M. Chem. Soc. Rev. 2010, 39,
28.He, Z.; Jiang, W.; Schalley, C. A. Chem. Soc. Rev. 2015, 44, 779–789.
2. Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011, 111,
29.Huang, C.-B.; Xu, L.; Zhu, J.-L.; Wang, Y.-X.; Sun, B.; Li, X.;
Yang, H.-B. J. Am. Chem. Soc. 2017, 139, 9459–9462.
3. Roberts, D. A.; Pilgrim, B. S.; Sirvinskaite, G.; Ronson, T. K.;
Nitschke, J. R. J. Am. Chem. Soc. 2018, 140, 9616–9623.
30.Yan, X.; Cook, T. R.; Wang, P.; Huang, F.; Stang, P. J. Nat. Chem.
31.Xu, L.; Wang, Y.-X.; Yang, H.-B. Dalton Trans. 2015, 44, 867–890.
32.Schmittel, M.; Saha, S. Adv. Inorg. Chem. 2018, 71, 135–175.
33.Neogi, S.; Lorenz, Y.; Engeser, M.; Samanta, D.; Schmittel, M.
34.Kirksey, C. H.; Hambright, P.; Storm, C. B. Inorg. Chem. 1969, 8,
4. Ghosh, A.; Paul, I.; Saha, S.; Paululat, T.; Schmittel, M. Org. Lett.
5. Chakraborty, S.; Endres, K. J.; Bera, R.; Wojtas, L.; Moorefield, C. N.;
Saunders, M. J.; Das, N.; Wesdemiotis, C.; Newkome, G. R.
6. Bloch, W. M.; Holstein, J. J.; Hiller, W.; Clever, G. H.
Angew. Chem., Int. Ed. 2017, 56, 8285–8289.
7. Saha, M. L.; Schmittel, M. Inorg. Chem. 2016, 55, 12366–12375.
35.Lebedeva, N. S.; Gubarev, Y. A.; Mamardashvili, N. Z.;
Mamardashvili, G. M.; Koifman, O. I.
8. Mittal, N.; Saha, M. L.; Schmittel, M. Chem. Commun. 2016, 52,
J. Inclusion Phenom. Macrocyclic Chem. 2016, 84, 71–77.
9. Howlader, P.; Mukherjee, P. S. Chem. Sci. 2016, 7, 5893–5899.
36.Samanta, S. K.; Samanta, D.; Bats, J. W.; Schmittel, M. J. Org. Chem.
10.Wang, W.; Wang, Y.-X.; Yang, H.-B. Chem. Soc. Rev. 2016, 45,
37.Collman, J. P.; Boulatov, R. J. Am. Chem. Soc. 2000, 122,
11.Hiraoka, S.; Hirata, K.; Shionoya, M. Angew. Chem., Int. Ed. 2004, 43,
38.Redman, J. E.; Feeder, N.; Teat, S. J.; Sanders, J. K. M. Inorg. Chem.
12.Hiraoka, S.; Hisanaga, Y.; Shiro, M.; Shionoya, M.
Angew. Chem., Int. Ed. 2010, 49, 1669–1673.
1377