1
460
Y.-H. Zhang et al. / Spectrochimica Acta Part A 79 (2011) 1449–1460
−
effect of the counterion Cl . Both PBE1PBE and B3LYP methods
predict a greater redshifted B band and a less redshifted Q band
for the ad-porphyrin II series than for the ad-porphyrin I series
[4] C.-Y. Lin, Y.-C. Wang, S.-J. Hsu, C.-F. Lo, E.W.-G. Diau, J. Phys. Chem. C 114 (2010)
87.
5] Q. Huang, C.J. Medforth, R. Schweitzer-Stenner, J. Phys. Chem. A 109 (2005)
0493.
6
[
1
(
Tables S40 and S41). The less red-shifted Q band can be attributed
[6] A.G. DiMagno, A.K. Wertsching, C.R. Ross, J. Am. Chem. Soc. 117 (1995)
8279.
−
to reduced interaction between the porphyrin ring and the Cl with
the extent of meso-phenyl substitution.
[
7] A.K. Wertsching, A.S. Koch, A.G. DiMagno, J. Am. Chem. Soc. 123 (2001)
932.
3
[
[
8] H. Ryeng, A. Ghosh, J. Am. Chem. Soc. 124 (2002) 8099.
9] R.E. Haddad, S. Gazeau, J. Pecaut, J.-C. Marchon, C.J. Medforth, J.A. Shelnutt, J.
Am. Chem. Soc. 125 (2003) 1253.
4
. Conclusion
[
10] Z. Zhou, C. Cao, Q. Liu, R. Jiang, Org. Lett. 12 (2010) 1780.
In this study, we employed theoretical calculations to compare
[11] V.N. Knyukshto, K.N. Solovyov, G.D. Egorova, Biospectroscopy 4 (1998) 121.
[12] Y.-P. Ma, S.-G. He, X.-L. Ding, Z.-C. Wang, W. Xue, Q. Shi, Phys. Chem. Chem.
Phys. 111 (2009) 2543.
structural and spectral variations with the extent of meso-phenyl
substitution between porphyrin diacids and zinc porphyrins. The
PBE1PBE method generates more acceptable results in the TDDFT
calculation of porphyrin diacids than the B3LYP and PBEPBE
methods. The TDDFT calculation indicates that both out-of-plane
distortion and meso-phenyl substitution intensify spectral redshift.
[
13] T. Honda, T. Kojima, S. Fukuzumi, Chem. Commun. (2009) 4994.
[14] G.D. Luca, A. Romeo, L.M. Scolaro, G. Ricciardi, A. Rosa, Inorg. Chem. 46 (2007)
5979.
[
15] T. Nakanishi, K. Ohkubo, T. Kojima, S. Fukuzumi, J. Am. Chem. Soc. 131 (2009)
77.
5
[
16] V.S. Chirvony, A. Hoek, V.A. Galievsky, I.V. Sazanovich, T.J. Schaafsma, D. Holten,
J. Phys. Chem. B 104 (2000) 9909.
−
The influence of the counterion Cl is complicated. On one hand,
−
[17] I.V. Avilov, A.Yu. Pannarin, V.S. Chirvony, Chem. Phys. Lett. 389 (2004) 352.
18] S. Juillard, Y. Ferrand, G. Simonneaux, L. Toupet, Tetrahedron 61 (2005)
489.
[19] A. Rosa, G. Ricciardi, E.J. Baerends, A. Romeo, L.M. Scolaro, J. Phys. Chem. A 107
2003) 11468.
the introduction of the Cl would reduce the HOMO–LUMO gap
[
−
because of the electron-donating effect of the Cl ion, which then
3
brings about an additional spectral redshift with regard to the cal-
culation without consideration of counterion. On the other hand,
(
[
[
20] Y.-H. Zhang, W.-J. Ruan, Z.-Y. Li, Y. Wu, J.-Y. Zheng, Chem. Phys. 315 (2005) 201.
21] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
−
the interaction between the Cl ion and the porphyrin ring is weak-
ened by meso-phenyl substitution; this reduces the redshift size
of the Q absorption. The PBE1PBE calculation indicates that the
electron-donating effect is the key factor in the redshift of B and Q
bands of zinc porphyrin series as well as in the redshift of the B band
of porphyrin diacid series; however, the electron delocalization
effect is predicted to be the primary cause of the redshift of Q band
of porphyrin diacids series. Meanwhile, out-of-plane distortion is
predicted to provide a moderate contribution to the spectral red-
shift of porphyrin diacids series, because of intensified out-of-plane
distortion.
[22] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[
[
23] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78 (1997) 1396.
24] R. Ma, P. Guo, H. Cui, X. Zhang, M.K. Nazeeruddin, M. Gratzel, J. Phys. Chem. A
113 (2009) 10119.
[25] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[26] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian,
J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J.
Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A.
Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels,
M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman,
J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham,
Acknowledgment
We thank Professor Shelnutt for kindly helping in NSD calcula-
tion and interpretation.
[
27] (a) S.I. Gorelsky, SWizard Program, University of Ottawa, Ottawa, Canada, 2010,
Appendix A. Supplementary data
(b) S.I. Gorelsky, A.B.P. Lever, J. Organomet. Chem. 635 (2001) 187.
28] D.-M. Chen, X. Liu, T.-J. He, F.-C. Liu, Chem. Phys. 289 (2003) 397.
[30] Y.-H. Zhang, W. Zhao, P. Jiang, L.-J. Zhang, T. Zhang, J. Wang, Spectrochim. Acta
A 75 (2010) 880.
[
[
Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.saa.2011.04.085.
[
31] W.R. Scheidt, J.U. Mondal, C.W. Eigenbrot, A. Adler, L.J. Radonovich, J.L. Hoard,
Inorg. Chem. 25 (1986) 795.
References
[
32] K.A. Nguyen, P.N. Day, R. Pachter, J. Phys. Chem. A 103 (1999) 9378.
[
[
[
1] M.O. Senge, in: K.M. Kadish, K.M. Smith, R. Guilard (Eds.), The Porphyrin Hand-
book, vol. 1, Academic Press, Boston, 2000, p. 239.
2] J.A. Shelnutt, C.J. Medforth, M.D. Berber, K.M. Barkigia, K.M. Smith, J. Am. Chem.
Soc. 113 (1991) 4077.
3] L.D. Spaulding, C.C. Chang, N.-T. Yu, R.H. Felton, J. Am. Chem. Soc. 97 (1975)
[33] B. Cheng, O.Q. Munro, H.M. Marqeus, W.R. Scheidt, J. Am. Chem. Soc. 119 (1997)
10732.
[34] PBE1PBE calculation on (Cl )2 cluster that has similar structure with the coun-
−
2
+
−
−
terpart in H4TPP (Cl )2 indicates that the p orbit of (Cl )2 involved in G-HOMO
orbit has much higher level.
2
517.