precious metal salts and the University of London Central
Research Fund for the purchase of a UV-Vis. spectrometer.
mixed thoroughly and placed in a 100 mL round-bottomed
flask fitted with a reflux condenser. The temperature was
quickly raised to 200 ꢀC and held there for 1 h. The blue solid
formed was cooled and washed with methanol (100 mL) to
remove soluble impurities. The crude mixture was placed in
a laboratory sublimation vessel, packed with dry ice and acet-
one, and unreacted phthalonitrile was removed by sublimation
at 140 ꢀC and atmospheric pressures. Following this, the crude
product (ca. 50% yield) was subjected to sublimation in a high
vacuum furnace. Optimal conditions were 550 ꢀC, 1 ꢂ 10ꢁ3
mm Hg and 8 h and the sublimation process was most efficient
when using small batches (0.25 g) of material. The purified
phthalocyanine, which was violet with a metallic lustre, was
isolated in ca. 20% yield.
References
1
Phthalocyanines: Properties and Applications, ed. C. C. Leznoff
and A. P. B. Lever, VCH, 1986–1993, vol. 4; N. B. McKeown,
Phthalocyanine Materials: Synthesis, Structure and Function,
CUP, 1998.
2
3
4
W. Freyer, M. Hill, H. Stiel and D. Leupold, J. Inform. Rec.,
1998, 24, 95.
H. Eckert, G. Fabry, Y. Kiesel, G. Raudaschl and C. Seidel,
Angew. Chem. Int. Ed. Engl., 1983, 22, 881.
H. Yamakado, K. Yakushi, N. Kosugi, H. Kuroda, A.
Kawamoto, J. Tanaka, T. Sugano, M. Kinoshita and S. Hino,
Bull. Chem. Soc. Jpn., 1989, 62, 2267.
Mp. > 360 ꢀC; (Found: C, 54.32; H, 2.28; N, 15.84. C32H16-
5
6
7
8
9
H. W. Li and F. F. Guarr, J. Electroanal. Chem., 1991,
297, 169.
A. K. Shukla, C. Paliteiro, R. Manoharan, A. Hamnett and J. B.
Goodenough, J. Appl. Electrochem., 1989, 19, 105.
C. Paliteiro, A. Hamnett and J. B. Goodenough, J. Electroanal.
Chem., 1988, 249, 167.
N8Pt requires C, 54.52; H, 2.23; N, 16.02%); n cmꢁ1 (KBr)
=
=
3046, 3010, 2921, 2852 (C N), 1511–1290 (C C, C–N),
1170–1076 (C–H) 725 (C–H out-of-plane); dH (D2SO4/D2O)
9.39 (1H, s, H-peripheral), 8.39 (1H, s, H-non-peripheral).
C. Paliteiro, A. Hamnett and J. B. Goodenough, J. Electroanal.
Chem., 1988, 239, 273.
Palladium phthalocyanine. An analogous method was
applied here, though using palladium dichloride. The yields
were slightly lowerꢁ3and the optimal sublimation conditions
were 650 ꢀC, 1 ꢂ 10 mm Hg and 8 h.
A. M. Schaffer, M. Gouterman and E. R. Davidson, Theor. Chim.
Acta, 1973, 30, 9.
10 M. Kasha, Radiat. Res., 1963, 20, 55.
Mp. > 360 ꢀC; (Found: C, 61.94; H, 2.53; N, 17.98. C32H16-
N8Pt requires C, 62.13; H, 2.61; N, 18.13%); n cmꢁ1 (KBr) ca.
11 P. A. Barrett, C. E. Dent and R. P. Linstead, J. Chem. Soc., 1936,
1719.
12 A. J. Appleby, J. Fleisch and M. Savy, J. Catal., 1976, 44, 281.
13 B. Z. Nikolic, R. R. Adzic and E. B. Yeager, J. Electroanal.
Chem., 1979, 103, 281.
=
=
3000 (C N), 1612, 1508, 1288, 914 (C C, C–N), 1168–1072
(C–H) 723 (C–H out-of-plane); dH (D2SO4/D2O) 9.39 (1H,
s, H-peripheral), 8.39 (1H, s, H-non-peripheral).
14 V. I. Gavrilov, N. V. Butusova, E. A. Luk’yanets and I. V.
Shelepin, Soviet Electrochem., 1980, 16, 1320.
15 N. Minami, J. Chem. Soc. Faraday Trans. 2, 1982, 78, 1871.
16 B. Simic-Glavaski, S. Zecevic and E. Yeager, J. Phys. Chem.,
1983, 87, 4555.
17 P. E. Smolenyak, E. J. Osburn, S. Chen, L. Chau, D. F. O’Brien
and N. R. Armstrong, Langmuir, 1997, 13, 6568.
18 N. Toshima and T. Tominaga, Bull. Chem. Soc. Jpn., 1996, 69,
2111.
Electrochemical studies
The working electrode was generally a 30 ꢂ 8 mm piece of
fluorine-doped tin oxide coated glass. Electrical contact was
made by means of a copper wire joined to the glass with silver
conductive paint and shielded from the electrolyte by an epoxy
resin or silicone sealant covering. The electrode was housed in
a 20 ꢂ 20 ꢂ 40 mm quartz cuvette with a platinum flag counter
electrode resting on the cuvette’s bottom and a calomel refer-
ence electrode in solution contact with the electrolyte from
above. The assembly was placed in a Hewlett Packard 8453
UV-vis. spectrometer with the cuvette face and the working
electrode’s face orthogonal to the path of the incident light.
Phthalocyanine layers were applied by means of mechanical
abrasion of the microcrystals onto the electrode surface. All
electrolytes were saturated with argon ( > 99.9%) by bubbling
the gas through the solution for 30 min prior to each experi-
ment and keeping a positive pressure above the solution during
experiments. Potentiostatic control was achieved with an
Oxford Electrodes manual potentiostat and sweep generator.
The experiments were conducted in a sequential potential step-
ping fashion by polarising the electrode at a given potential
(monitored by a digital voltmeter attached to the voltage out-
put channel of the potentiostat) and recording the Electronic
absorbance spectra approximately 5 s after each step. The
applied potential was then increased/decreased to the next
measurement point. Generally spectra were recorded at inter-
vals of 100 mV.39 Potentials are reported referenced to the
saturated calomel reference electrode (SCE).
19 N. Toshima, T. Tominaga and S. Kawamura, Bull. Chem. Soc.
Jpn., 1996, 69, 245.
20 H. Li and T. F. Guarr, J. Electroanal. Chem., 1991, 297, 169.
21 I. L. Kogan and K. Yakushi, J. Mater. Chem., 1997, 7, 2231.
22 I. L. Kogan and K. Yakushi, Electrochim. Acta, 1998, 43, 2053.
23 A. Kempa and J. Dobrowolski, Can. J. Chem., 1988, 66, 2553.
24 T. Nyokong, S. Afr. J. Chem., 1995, 48, 23.
25 F. L. Plows and A. C. Jones, J. Mol. Spectrosc., 1999, 194, 163.
26 L. M. Mink, M. L. Neitzel, L. M. Bellomy, R. E. Falvo, R. K.
Boggess, B. T. Trainum and P. Yeaman, Polyhedron, 1997, 16,
2809.
27 S. M. Bayliss, S. Heutz, G. Rumbles and T. S. Jones, Phys. Chem.
Chem. Phys., 1999, 1, 2373.
28 L. Chau, C. D. England, S. Chen and N. R. Armstrong, J. Phys.
Chem., 1993, 97, 2699.
29 L. Chau, C. D. England, S. Chen and N. R. Armstrong, J. Phys.
Chem., 1993, 97, 2699.
30 S. M. Bayliss, PhD Thesis, Department of Chemistry, Imperial
College, London, 1999.
31 Y. L. Pan, Y. J. Wu, L. B. Chen, Y. Y. Zhao, Y. H. Shen, F. M.
Li, S. Y. Shen and D. H. Huang, Appl. Phys. A, 1998, 66, 569.
32 J. Jiang and A. R. Kucernak, Synth. Met., 2000, 114, 209.
33 J. Jiang and A. R. Kucernak, Electrochim. Acta, 2000,
45, 2227.
34 J. Jiang and A. R. Kucernak, J. Electroanal. Chem., 2000, 490, 17.
35 J. Jiang and A. R. Kucernak, Electrochim. Acta, 2001, 46, 1223.
36 R. J. C. Brown and A. R. Kucernak, Electrochim. Acta, 2001,
46, 2573.
37 R. J. Mortimer, Chem. Soc. Rev., 1997, 26, 147.
38 J. L. Hahl, L. R. Faulkner, K. Dwarakanath and H. Tachikawa,
J. Am. Chem. Soc., 1986, 108, 5434.
Acknowledgements
39 G. T. Byrne, R. P. Linstead and A. R. Lowe, J. Chem. Soc., 1934,
1017.
40 P. Turek, P. Petit, J.-J. Simon, R. Even, B. Boudjema, G. Guillard
and M. Maitrota, J. Am. Chem. Soc., 1987, 109, 5119.
This project has been funded by the United Kingdom EPSRC
and MOD/DERA under Grant GR/L 57920. We acknowl-
edge and thank Johnson Matthey plc for the loan of the
T h i s j o u r n a l i s Q T h e R o y a l S o c i e t y o f C h e m i s t r y a n d t h e
C e n t r e N a t i o n a l d e l a R e c h e r c h e S c i e n t i f i q u e 2 0 0 4
680
N e w . J . C h e m . , 2 0 0 4 , 2 8 , 6 7 6 – 6 8 0