7
1
76
covering LRLRGG . Phage selection of the library
with Ube1, the human E1, identified UB variants with
quite different C-terminal sequences from the wild type
Table 1. Kinetic Parameters of ATP-PP Exchange Catalyzed by
i
Ube1 with the UB-Mimicking Peptides
(
wt) UB (SI, Figure S2). Interestingly these UB variants
12
K
1/2
k
cat
À1
k
cat/K1/2
share similar reactivities as the wt UB with Ube1. As
shown by the sequence alignments of the phage selected
UB clones, except for Arg72 and Gly75 that have a strong
preference for wt residues, positions 71 and 73 in the UB
variants are predominantly occupied with bulky aromatic
side chains such as Phe, Tyr, and Trp, instead of Leu
(Figure S2). Position 74 of the UB variants may also have
aromatic or positively charged His side chains to replace the
wt Arg residue. It has previously been reported that short
peptides corresponding to the C-terminal sequences of the
wt UB can be activated by the E1 enzymes and transferred
À1
À1
(μM)
(min
)
(μM min )
wtUB (full length)
1.4 ( 0.5
88 ( 17
60
C-terminal peptides of wtUB and variants
70
76
a
a
À5
P1 ( VLRLRGG
)
76
À
À
7.7 Â 10
1.0 Â 10
2.3 Â 10
70
À2
À2
À1
P2 ( VWRFHGG
)
342 ( 17
426 ( 11
141 ( 5
3.5 ( 0.6
9.7 ( 1.4
15 ( 2.7
7
0
76
P3 ( VQRYWGG
)
70
76
P4 ( VYRFYGG
)
1.1 Â 10
a
K
1/2 and kcat could not be determined for P1 due to its low activity.
of the UB transfer cascades are also valid targets for inhibitor
design. Recent screening efforts have identified compounds
1
3
through the E1ÀE2ÀE3 cascade for protein modification.
1
1
that bind to E2 or E3 and block UB transfer. Here we
report the identification of short peptides that mimic UB and
form covalent conjugates with the E1ÀE2ÀE3 cascade
We were thus interested in assaying if the C-terminal
peptides of the UB variants from phage selection are more
reactive with the E1 enzyme than the C-terminal peptide
of wt UB.
(Table 1). Once these peptides are charged to the cascade
enzymes, they can effectively block UB transfer through the
cascade. The development of these UB-mimicking peptides
provides a new way to inhibit protein modification by UB.
We identified the UB-mimicking peptides in a study
profiling the specificity of the E1 enzymes with the C-terminal
We synthesized peptides corresponding to the C-terminal
sequences of wtUB (P1, VLRLRGG), and UB var-
iants e27 (P2, VWRFHGG), e40 (P3, VQRYWGG) and
e25 (P4, VYRFYGG), and measured the ATP-PP ex-
i
change kinetics of the peptides catalyzed by Ube1 (Figure S2
2a
and Table 1). The P1 peptide UB could not saturate
1
2
sequence of UB by phage display. We constructed a
UB library with randomized UB C-terminal residues
Ube1 at a concentration as high as 500 μM in the ATP-PPi
exchange reaction, so only k /K could be measured.
cat 1/2
(
8) (a) Brownell, J. E.; Sintchak, M. D.; Gavin, J. M.; Liao, H.;
In contrast, the P2ÀP4 peptides displayed a much higher
Bruzzese, F. J.; Bump, N. J.; Soucy, T. A.; Milhollen, M. A.; Yang, X.;
Burkhardt, A. L.; Ma, J.; Loke, H. K.; Lingaraj, T.; Wu, D.; Hamman,
K. B.; Spelman, J. J.; Cullis, C. A.; Langston, S. P.; Vyskocil, S.; Sells,
T. B.; Mallender, W. D.; Visiers, I.; Li, P.; Claiborne, C. F.; Rolfe, M.;
Bolen, J. B.; Dick, L. R. Mol. Cell 2010, 37, 102. (b) Soucy, T. A.; Smith,
P. G.; Milhollen, M. A.; Berger, A. J.; Gavin, J. M.; Adhikari, S.;
Brownell, J. E.; Burke, K. E.; Cardin, D. P.; Critchley, S.; Cullis, C. A.;
Doucette, A.; Garnsey, J. J.; Gaulin, J. L.; Gershman, R. E.; Lublinsky,
A. R.; McDonald, A.;Mizutani, H.; Narayanan, U.; Olhava, E. J.; Peluso,
S.; Rezaei, M.; Sintchak, M. D.; Talreja, T.; Thomas, M. P.; Traore, T.;
Vyskocil, S.;Weatherhead, G. S.;Yu, J.;Zhang, J.;Dick, L. R.;Claiborne,
C. F.; Rolfe, M.; Bolen, J. B.; Langston, S. P. Nature 2009, 458, 732.
affinity for Ube1 with K values of 141À426 μM. These
1/2
peptides were 130À1,400-fold more active than P1 in the
ATP/PP exchange reactions based on the k /K values
i
cat 1/2
(Table 1). Despite the higher activities of the phage selected
peptides with Ube1, P2ÀP4 were still 545À6,000 fold less
active than full length UB, largely due to the much lower
K1/2 of UB with Ube1 (1.4 μM) (Table 1). The high affinity
of UB with Ube1 can be attributed to the multiple binding
(
9) (a) Milhollen, M. A.; Traore, T.; Adams-Duffy, J.; Thomas,
interfaces between UB and E1 besides the UB C-terminus
(
M. P.; Berger, A. J.; Dang, L.; Dick, L. R.; Garnsey, J. J.; Koenig, E.;
Langston, S. P.; Manfredi, M.; Narayanan, U.; Rolfe, M.; Staudt, L. M.;
Soucy, T. A.; Yu, J.; Zhang, J.; Bolen, J. B.; Smith, P. G. Blood 2010, 116,
14
SI, Figure S3A). 7-mer peptides with the C-terminal
sequences of the UB variants e6, e19, e26, e46, and e47
from phage selection (Figure S2) were not reactive with
Ube1 based on ATP-PP exchange. These peptides have the
1
515. (b) Soucy, T. A.; Dick, L. R.; Smith, P. G.; Milhollen, M. A.;
Brownell, J. E. Genes Cancer 2010, 1, 708.
10) (a) Kitagaki, J.; Yang, Y.; Saavedra, J. E.; Colburn, N. H.; Keefer,
i
(
L. K.; Perantoni, A. O. Oncogene 2009, 28, 619. (b) Ungermannova, D.;
Parker, S. J.; Nasveschuk, C. G.; Wang, W.; Quade, B.; Zhang, G.; Kuchta,
R. D.; Phillips, A. J.; Liu, X. PLoS One 2012, 7, e29208. (c) Xu, G. W.; Ali,
M.; Wood, T. E.; Wong, D.; Maclean, N.; Wang, X.; Gronda, M.; Skrtic,
M.; Li, X.; Hurren, R.; Mao, X.; Venkatesan, M.; Beheshti Zavareh, R.;
Ketela, T.; Reed, J. C.; Rose, D.; Moffat, J.; Batey, R. A.; Dhe-Paganon, S.;
Schimmer, A. D. Blood 2010, 115, 2251. (d) Yang, Y.; Kitagaki, J.; Dai,
R. M.; Tsai, Y. C.; Lorick, K. L.; Ludwig, R. L.; Pierre, S. A.; Jensen, J. P.;
Davydov, I. V.; Oberoi, P.; Li, C. C.; Kenten, J. H.; Beutler, J. A.; Vousden,
K. H.; Weissman, A. M. Cancer Res. 2007, 67, 9472.
second to last Gly (Gly75 of wt UB) replaced with larger
residues that may disrupt peptide binding to the E1 enzyme.
Since the peptides P2ÀP4 can be activated by Ube1 as
in the case of wt UB, we refer to them as “UB-mimicking
peptides”.
We modeled structures of the UB-mimicking peptides
14
bound toUba1basedon theUB-Uba1 complex and used
the Protein Interfaces, Surfaces, and Assemblies (PISA)
(11) (a) Aghajan, M.; Jonai, N.; Flick, K.; Fu, F.; Luo, M.; Cai, X.;
15
Ouni, I.; Pierce, N.; Tang, X.; Lomenick, B.; Damoiseaux, R.; Hao, R.;
Del Moral, P. M.; Verma, R.; Li, Y.; Li, C.; Houk, K. N.; Jung, M. E.;
Zheng, N.; Huang, L.; Deshaies, R. J.; Kaiser, P.; Huang, J. Nat.
Biotechnol. 2010, 28, 738. (b) Ceccarelli, D. F.; Tang, X.; Pelletier, B.;
Orlicky, S.; Xie, W.; Plantevin, V.; Neculai, D.; Chou, Y. C.; Ogunjimi,
A.; Al-Hakim, A.; Varelas, X.; Koszela, J.; Wasney, G. A.; Vedadi, M.;
Dhe-Paganon, S.; Cox, S.; Xu, S.; Lopez-Girona, A.; Mercurio, F.;
Wrana, J.; Durocher, D.; Meloche, S.; Webb, D. R.; Tyers, M.; Sicheri,
F. Cell 2011, 145, 1075. (c) Orlicky, S.; Tang, X.; Neduva, V.; Elowe, N.;
Brown, E. D.; Sicheri, F.; Tyers, M. Nat. Biotechnol. 2010, 28, 733.
server to analyze peptide binding with Uba1 (Figure S3).
PISA calculations suggested that the wt P1 peptide and the
P2, P3, and P4 peptides have similar interface areas with E1,
but the binding energy of P1 is 1.5À2 kcal/mol less than that
(13) (a) Jonnalagadda, S.; Ecker, D. J.; Sternberg, E. J.; Butt, T. R.;
Crooke, S. T. J. Biol. Chem. 1988, 263, 5016. (b) Madden, M. M.; Song, W.;
Martell, P. G.; Ren, Y.; Feng, J.; Lin, Q. Biochemistry 2008, 47, 3636.
(14) Lee, I.; Schindelin, H. Cell 2008, 134, 268.
(12) Zhao, B.; Bhuripanyo, K.; Schneider, J.; Zhang, K.; Schindelin,
H.; Boone, D.; Yin, J. ACS Chem. Biol. 2012, DOI: 10.1021/cb300339p.
(15) Krissinel, E.; Henrick, K. J. Mol. Biol. 2007, 372, 774.
Org. Lett., Vol. 14, No. 22, 2012
5761