Page 7 of 8
Journal of the American Chemical Society
greve, M. Biophysical Mapping of the Adenosine A 2A Reꢀ
ceptor. J. Med. Chem. 2011, 54 (13), 4312–4323.
REFERENCES
1
2
3
4
5
6
7
8
9
(
1)
Dürrenberger, M.; Ward, T. R. Recent Achievments in the
Design and Engineering of Artificial Metalloenzymes. Curr.
Opin. Chem. Biol. 2014, 19, 99–106.
(
(
(
20)
21)
22)
Jazayeri, A.; Andrews, S. P.; Marshall, F. H. Structurally
Enabled Discovery of Adenosine A 2A Receptor Antagonists.
Chem. Rev. 2017, 117 (1), 21–37.
Klaasse, E. C.; IJzerman, A. P.; de Grip, W. J.; Beukers, M.
W. Internalization and Desensitization of Adenosine Recepꢀ
tors. Purinergic Signal. 2008, 4 (1), 21–37.
Neustadt, B. R.; Hao, J.; Lindo, N.; Greenlee, W. J.; Stamꢀ
ford, A. W.; Tulshian, D.; Ongini, E.; Hunter, J.; Monopoli,
A.; Bertorelli, R.; Foster, C.; Arik, L.; Lachowicz, J.;
Kwokei, N.; Feng, KꢀI. Potent, Selective, and Orally Active
Adenosine A2A Receptor Antagonists: Arylpiperazine Deꢀ
(
2)
Dydio, P.; Key, H. M.; Nazarenko, A.; Rha, J. Y.ꢀE.;
Seyedkazemi, V.; Clark, D. S.; Hartwig, J. F. An Artificial
Metalloenzyme with the Kinetics of Native Enzymes. Sciꢀ
ence 2016, 354 (6308), 102–106.
(3)
Lewis, J. C. Artificial Metalloenzymes and Metallopeptide
Catalysts for Organic Synthesis. ACS Catal. 2013, 3 (12),
2
954–2975.
(
4)
Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni,
M. M.; Lebrun, V.; Reuter, R.; Köhler, V.; Lewis, J. C.;
Ward, T. R. Artificial Metalloenzymes: Reaction Scope and
Optimization Strategies. Chem. Rev. 2018, 118 (1), 142–231.
Wallace, S.; Balskus, E. P. Opportunities for Merging Chemꢀ
ical and Biological Synthesis. Curr. Opin. Biotechnol. 2014,
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
rivatives
C]pyrimidines. Bioorg. Med. Chem. Lett. 2007, 17 (5),
376–1380.
of
pyrazolo[4,3ꢀE]ꢀ1,2,4ꢀtriazolo[1,5ꢀ
1
(
(
5)
6)
(23)
Neustadt, B. R.; Lindo, N. A.; Greenlee, W. J.; Tulshian, D.;
Silverman, L. S.; Xia, Y.; Boyle, C. D.; Chackalamannil, S.
Preparation of 5ꢀAminoꢀpyrazolo[4,3ꢀE]ꢀ1,2,4ꢀtriazolo[1,5ꢀ
c] Pyrimidines as Adenosine A2A Receptor Antagonists.
US2001/016954, 2001.
Kecskés, M.; Kumar, T. S.; Yoo, L.; Gao, Z.ꢀG.; Jacobson,
K. A. Novel Alexa Fluorꢀ488 Labeled Antagonist of the
A2A Adenosine Receptor: Application to a Fluorescence Poꢀ
larizationꢀBased Receptor Binding Assay. Biochem. Pharꢀ
macol. 2010, 80 (4), 506–511.
Deuss, P. J.; Popa, G.; Slawin, A. M. Z.; Laan, W.; Kamer,
P. C. J. Artificial Copper Enzymes for Asymmetric Dielsꢀ
Alder Reactions. ChemCatChem 2013, 5 (5), 1184–1191.
Reetz, M. T. Artificial Metalloenzymes as Catalysts in
Stereoselective DielsꢀAlder Reactions. Chem. Rec. 2012, 12
3
0, 1–8.
Wilson, Y. M.; Dürrenberger, M.; Nogueira, E. S.; Ward, T.
R. Neutralizing the Detrimental Effect of Glutathione on
Precious Metal Catalysts. J. Am. Chem. Soc. 2014, 136 (25),
(
24)
8
928–8932.
(
7)
Sletten, E. M.; Bertozzi, C. R. Bioorthogonal Chemistry:
Fishing for Selectivity in a Sea of Functionality. Angew.
Chem. Int. Ed. 2009, 48 (38), 6974–6998.
(8)
Sasmal, P. K.; Streu, C. N.; Meggers, E. Metal Complex
Catalysis in Living Biological Systems. Chem Commun
(
(
(
(
25)
26)
27)
28)
2
013, 49 (16), 1581–1587.
(
(
9)
Jeschek, M.; Reuter, R.; Heinisch, T.; Trindler, C.; Klehr, J.;
Panke, S.; Ward, T. R. Directed Evolution of Artificial
Metalloenzymes for in Vivo Metathesis. Nature 2016, 537
(
4), 391–406.
(
7622), 661–665.
Roelfes, G.; Boersma, A. J.; Feringa, B. L. Highly Enantiꢀ
oselective DNAꢀBased Catalysis. Chem. Commun. 2006, No.
10)
Kiyonaka, S.; Kubota, R.; Michibata, Y.; Sakakura, M.;
Takahashi, H.; Numata, T.; Inoue, R.; Yuzaki, M.; Hamachi,
I. Allosteric Activation of MembraneꢀBound Glutamate Reꢀ
ceptors Using Coordination Chemistry within Living Cells.
Nat. Chem. 2016, 8 (10), 958–967.
6
, 635.
Ghattas, W.; CotchicoꢀAlonso, L.; Maréchal, J.ꢀD.; Urvoas,
A.; Rousseau, M.; Mahy, J.ꢀP.; Ricoux, R. Artificial Metalꢀ
loenzymes with the Neocarzinostatin Scaffold: Toward a Biꢀ
ocatalyst for the DielsꢀAlder Reaction. ChemBioChem 2016,
(
(
11)
12)
Naldini, L. Gene Therapy Returns to Centre Stage. Nature
2
015, 526 (7573), 351–360.
1
7 (5), 433–440.
Osseili, H.; Sauer, D. F.; Beckerle, K.; Arlt, M.; Himiyama,
T.; Polen, T.; Onoda, A.; Schwaneberg, U.; Hayashi, T.;
Okuda, J. Artificial Diels–Alderase Based on the Transꢀ
membrane Protein FhuA. Beilstein J. Org. Chem. 2016, 12,
(
29)
Bos, J.; Fusetti, F.; Driessen, A. J. M.; Roelfes, G. Enantiꢀ
oselective Artificial Metalloenzymes by Creation of a Novel
Active Site at the Protein Dimer Interface. Angew. Chem.
Int. Ed. 2012, 51 (30), 7472–7475.
Filice, M.; Romero, O.; GutiérrezꢀFernández, J.; de las
Rivas, B.; Hermoso, J. A.; Palomo, J. M. Synthesis of a Hetꢀ
erogeneous Artificial Metallolipase with Chimeric Catalytic
Activity. Chem Commun 2015, 51 (45), 9324–9327.
Di Meo, T.; Ghattas, W.; Herrero, C.; Velours, C.; Minard,
P.; Mahy, J.ꢀP.; Ricoux, R.; Urvoas, A. αRep A3: A Versaꢀ
tile Artificial Scaffold for Metalloenzyme Design. Chem. ꢀ
Eur. J. 2017, 23 (42), 10156–10166.
Cheng, Y.; Prusoff, W. H. Relationship between the Inhibiꢀ
tion Constant (K1) and the Concentration of Inhibitor Which
Causes 50 per Cent Inhibition (I50) of an Enzymatic Reacꢀ
tion. Biochem. Pharmacol. 1973, 22 (23), 3099–3108.
Louis, B.; Detoni, C.; Carvalho, N. M. F.; Duarte, C. D.;
Antunes, O. A. C. Cu(II) Bipyridine and Phenantroline
Complexes: TailorꢀMade Catalysts for the Selective Oxidaꢀ
tion of Tetralin. Appl. Catal. Gen. 2009, 360 (2), 218–225.
Zhang, Q.; Zhang, F.; Wang, W.; Wang, X. Synthesis, Crysꢀ
tal Structure and DNA Binding Studies of a Binuclear copꢀ
per(II) Complex with Phenanthroline. J. Inorg. Biochem.
1
314–1321.
(30)
(
(
13)
14)
Kim, H. J.; Ruszczycky, M. W.; Choi, S.; Liu, Y.; Liu, H.
EnzymeꢀCatalysed [4+2] Cycloaddition Is a Key Step in the
Biosynthesis of Spinosyn A. Nature 2011, 473 (7345), 109–
1
12.
(
(
(
31)
32)
33)
Byrne, M. J.; Lees, N. R.; Han, L.ꢀC.; van der Kamp, M. W.;
Mulholland, A. J.; Stach, J. E. M.; Willis, C. L.; Race, P. R.
The Catalytic Mechanism of a Natural Diels–Alderase Reꢀ
vealed in Molecular Detail. J. Am. Chem. Soc. 2016, 138
(19), 6095–6098.
(
(
15)
16)
Oikawa, H. Nature’s Strategy for Catalyzing DielsꢀAlder
Reaction. Cell Chem. Biol. 2016, 23 (4), 429–430.
Fredholm, B. B.; IJzerman, A. P.; Jacobson, K. A.; Klotz,
K.ꢀN.; Linden, J. International Union of Pharmacology.
XXV. Nomenclature and Classification of Adenosine Recepꢀ
tors. Pharmacol. Rev. 2001, 53 (4), 527.
(
17)
Fredholm, B. B.; Irenius, E.; Kull, B.; Schulte, G. Compariꢀ
son of the Potency of Adenosine as an Agonist at Human
Adenosine Receptors Expressed in Chinese Hamster Ovary
cells11Abbreviations: cAMP, Cyclic Adenosine 3′,5′ꢀ
Monophosphate; CHO, Chinese Hamster Ovary; NBMPR,
Nitrobenzylthioinosine; and NECA, 5′ꢀNꢀEthyl Carboxamiꢀ
do Adenosine. Biochem. Pharmacol. 2001, 61 (4), 443–448.
Chen, J.ꢀF.; Eltzschig, H. K.; Fredholm, B. B. Adenosine
Receptors as Drug Targets — What Are the Challenges?
Nat. Rev. Drug Discov. 2013, 12 (4), 265–286.
(34)
2
006, 100 (8), 1344–1352.
(
(
35)
36)
Draksharapu, A.; Boersma, A. J.; Browne, W. R.; Roelfes,
G. Characterisation of the Interactions between Substrate,
Copper(II) Complex and DNA and Their Role in Rate Acꢀ
celeration in DNAꢀBased Asymmetric Catalysis. Dalton
Trans 2015, 44 (8), 3656–3663.
Briddon, S. J.; Middleton, R. J.; Cordeaux, Y.; Flavin, F. M.;
Weinstein, J. A.; George, M. W.; Kellam, B.; Hill, S. J.
Quantitative Analysis of the Formation and Diffusion of A1ꢀ
(
18)
(19)
Zhukov, A.; Andrews, S. P.; Errey, J. C.; Robertson, N.;
Tehan, B.; Mason, J. S.; Marshall, F. H.; Weir, M.; Conꢀ
ACS Paragon Plus Environment