Please do not adjust margins
ChemComm
DOI: 10.1039/C6CC02012G
COMMUNICATION
Journal Name
blocks for the preparation of N-fused indoline derivatives. The
carbocyclization–functionalisation of the aminoallene subunit
was realized when allyl bromide was added in the palladium-
selected reviews, see: (b) T. Lechel, F. Pfrengle, H.-U. Reissig and R.
Zimmer, ChemCatChem, 2013, , 2100; (c) S. Yu and S. Ma, Angew.
Chem. Int. Ed., 2012, 51, 3074; (d) N. Krause and C. Winter, Chem.
Rev., 2011, 111, 1994; (e) C. Aubert, L. Fensterbank, P. Garcia, M.
Malacria and A. Simonneau, Chem. Rev., 2011, 111, 1954; (f) A. S. K.
Hashmi, Angew. Chem. Int. Ed., 2000, 39, 3590.
5
catalyzed transformation of 2-allenyl-1H-indoles
N-fused indolines 11 (Scheme 7).
3 to generate
In conclusion, an efficient iron-catalyzed Selectfluor-
assisted synthetic route to 2-allenyl-2-substituted-3,3-
difluoroindolines from easily accessible N-allenyl-indole
substrates under mild conditions has been reported. The
Fe(III)/Selectfluor system enables the highly selective
difluorofunctionalisation/aza–Claisen rearrangement sequence
of various 1-allenyl-2-aryl-indoles at ambient temperature.
Besides, trifluoroderivatives can be achieved starting from 1-
allenyl-2-methyl substrates. Future work could be directed
towards the development of an asymmetric version.
6
For a review on the aza–Claisen rearrangement, see: (a) K. C.
Majumdar, T. Bhattacharyya, B. Chattopadhyay and B. Sinha,
Synthesis, 2009, 2117. For the C2–C3 Claisen rearrangement of
indoles to form allenyl oxindoles, see: (b) T. Cao, E. C. Linton, J.
Deitch, S. Berritt and M. C. Kozlowski, J. Org. Chem., 2012, 77
,
11034; (c) T. Cao, J. Deitch, E. C. Linton and M. C. Kozlowski, Angew.
Chem. Int. Ed., 2012, 51, 2448.
For a fluoro-heterocyclisation reaction promoted by Selectfluor in
the absence of any metal catalyst or base, see: D. Parmar and M.
7
8
Rueping, Chem. Commun., 2014, 50, 13928.
Gold complexes have been used extensively for the synthetic
community due to their powerful soft Lewis acidic nature. For
selected reviews on gold catalysis, see: (a) A. S. K. Hashmi, Accounts
Chem. Res., 2014, 47, 864; (b) C. Obradors and A. M. Echavarren,
Accounts Chem. Res., 2014, 47, 902; (c) B. Alcaide and P. Almendros,
Accounts Chem. Res., 2014, 47, 939; (d) L. Fensterbank and M.
Malacria, Accounts Chem. Res., 2014, 47, 953; (e) M. Rudolph and A.
S. K. Hashmi, Chem. Soc. Rev., 2012, 41, 2448; (f) A. Corma, A. Leyva-
Pérez and M. J. Sabater, Chem. Rev., 2011, 111, 1657; (g) N. Krause
and C. Winter, Chem. Rev., 2011, 111, 1994; (h) A. S. K. Hashmi,
Angew. Chem. Int. Ed., 2010, 49, 5232. For the gold(I)-catalyzed
propargyl Claisen rearrangement, see: (i) B. D. Sherry, F. D. Toste, J.
Am. Chem. Soc., 2004, 126, 15978. (j) For the gold(I)-catalyzed
tandem alkoxylation/Claisen rearrangement, see: H. Wu, W. Zi, G. Li,
H. Lu and F. D. Toste, Angew. Chem. Int. Ed., 2015, 54, 8529.
Support for this work by MINECO and FEDER (Projects
CTQ2012-33664-C02-01, CTQ2012-33664-C02-02, CTQ2015-
65060-C2-1-P, and CTQ2015-65060-C2-2-P) is gratefully
acknowledged. S. C. thanks MEC for a predoctoral contract.
Notes and references
1
(a) Fluorine in Pharmaceutical and Medicinal Chemistry: From
Biophysical Aspects to Clinical Applications, V. Gouverneur and K.
Müller, Imperial College Press, London, 2012; (b) Fluorine in
Medicinal Chemistry and Chemical Biology, I. Ojima, Wiley-
Blackwell, Chichester, U.K., 2009; (c) Bioorganic and Medicinal
Chemistry of Fluorine, J.-P. Bégué and D. Bonnet-Delpon, John Wiley
9
(a) J. Kuang and S. Ma, J. Org. Chem., 2009, 74, 1763; (b) P. Crabbé,
H. Fillion, D. André and J. L. Luche, J. Chem. Soc., Chem. Commun.,
&
Sons, Hoboken, 2008; (d) D O’Hagan, Chem. Soc. Rev., 2008, 37
08; (e) S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, Chem.
,
1
979, 860.
3
Soc. Rev., 2008, 37, 320.
1
1
0 For a recent review, see: J. Wu, Tetrahedron Lett., 2014, 55, 4289.
1 Although the isolation of 1-(buta-2,3-dienyl)-3-fluoro-2-phenyl-1H-
indole 4a from the uncatalyzed reaction of 2a outlined in Scheme 2
was fortuitous, some information has been gathered in favor of the
pathway shown in Scheme 6.
2
3
For a review, see: N. A. Meanwell, J. Med. Chem., 2011, 54, 2529.
For reviews on dearomatization of indoles and heteroaromatic
compounds, see: (a) N. Denizot, T. Tomakinian, R. Beaud, C.
Kouklovsky and G. Vincent, Tetrahedron Lett., 2015, 56, 4413; (b) S.
P. Roche, J.-J. Y. Tendoung, and B. Tréguier, Tetrahedron, 2015, 71,
1
2
In order to see if compound 4a is able to rearrange to 3a under
metal catalysis, reaction of 4a with a catalytic amount of either
3
4
549; (c) Q. Ding, X. Zhou, and R. Fan, Org. Biomol. Chem., 2014, 12,
807. For bioactive indolines, see: (d) T. Hata, Y. Sano, R. Sugawara,
Fe(OTf)
Selectfluor and NaHCO
3
or [(Ph
3
P)AuNTf
2
] was conducted in the presence of
3
. The reaction did proceed well to give 3,3-
A. Matsumae, K. Kanamori, T. Shima and T. Hoshi, J. Antibiot. Ser. A,
956, , 141; (e) M. Bös, F. Jenck, J. R. Martin, J. L. Moreau, V. Mutel,
difluoroindoline 3a. Therefore, we have enough evidence to propose
that 3-fluoroindole 4a is indeed an intermediate.
1
9
A. J. Sleight and U. Widmer, Eur. J. Med. Chem., 1997, 32, 253; (f) M.
Goldbrunner, G. Loidl, T. Polossek, A. Mannschreck and E. V.
Angerer, J. Med. Chem., 1997, 40, 3524; (g) H. Zhao, X. He, A.
Thurkauf, D. Hoffman, A. Kieltyka, R. Brodbeck, R. Primus and J. W.
F. Wasley, Bioorg. Med. Chem. Lett., 2002, 12, 3111; (h) B. D. Ames,
X. Liu and C. T. Walsh, Biochemistry, 2010, 49, 8564; (i) D. Zhang, H.
Song and Y. Qin, Acc. Chem. Res., 2011, 44, 447; (j) S. Cai, L. Du, A. L.
1
3 (a) T. Hata, Y. Sano, R. Sugawara, A. Matsumae, K. Kanamori, T.
Shima and T. Hoshi, J. Antibiot. Ser. A, 1956, , 141; (b) M. Bös, F.
Jenck, J. R. Martin, J. L. Moreau, V. Mutel, A. J. Sleight and U.
Widmer, Eur. J. Med. Chem., 1997, 32, 253; (c) M. Goldbrunner, G.
Loidl, T. Polossek, A. Mannschreck and E. V. Angerer, J. Med. Chem.,
9
1
2
2
997, 40, 3524; (d) B. D. Ames, X. Liu and C. T. Walsh, Biochemistry,
010, 49, 8564; (e) D. Zhang, H. Song and Y. Qin, Acc. Chem. Res.,
011, 44, 447; (f) S. Cai, L. Du, A. L. Gerea, J. B. King, J. You and R. H.
Gerea, J. B. King, J. You and R. H. Cichewicz, Org. Lett., 2013, 15
186.
,
4
Cichewicz, Org. Lett., 2013, 15, 4186.
4
(a) J. Z. M. Fong, S. S. S. Choo, J.-A. Richard, M. V. Garland, L. Guo, C.
W. Johannes and T. M. Nguyen, Eur. J. Org. Chem., 2015, 995; (b) T.
Wang, D. L. Hoon and Y. Lu, Chem. Commun., 2015, 51, 10186; (c) B.
Tréguier and S. P. Roche, Org. Lett., 2014, 16, 278; (d) T. M. Nguyen,
H. A. Duong, J.-A. Richard, C. W. Johannes, F. Pincheng, D. K. J. Ye
1
4 The angular tricyclic hydropyrido[1,2-a]-indole core is a precursor of
alkaloids and related bioactive products: (a) M. V. Riofski, J. P.
John, M. M. Zheng, J. Kirshner and D. A. Colby, J. Org.
Chem., 2011, 76, 3676; (b) D. B. England and A. Padwa, J. Org.
Chem., 2008, 73 , 2792; (c) D. L. Taylor, P. S. Ahmed, P. Chambers, A.
S. Tyms, J. Bedard, J. Duchaine, G. Falardeau, J. F. Lavallée, W.
and E. L. Shuying
Ong, H. A. Duong, T. M. Nguyen and C. W. Johannes, Org. Lett.,
012, 14, 5676; (f) O. Lozano, G. Blessley, T. Martínez del Campo, A.
, Chem. Commun., 2013, 49, 10602; (e) Y. H. Lim, Q.
Brown, R.
F.
Rando
and T.
Bowlin, Antiviral
Chem.
2
Chemother., 1999, 10, 79; (d) T. Iino, M. Katsura and K. Kuriyama, J.
Pharmacol. Exp. Ther., 1996, 278, 614; (e) M. Kato, S. Nishino, K. Ito
and H. Takasugi, Chem. Pharm. Bull., 1995, 43, 1346.
L. Thompson, G. T. Giuffredi, M. Bettati, M. Walker, R. Borman, V.
Gouverneur, Angew. Chem. Int. Ed., 2011, 50, 8105; (g) R. Lin, S.
Ding, Z. Shi and N. Jiao, Org. Lett., 2011, 13, 4498; (h) N. Shibata, T.
Tarui, Y. Doi and K. L. Kirk, Angew. Chem. Int. Ed., 2001, 40, 4461; (i)
Y. Takeuchi, T. Tarui, N. Shibata, Org. Lett., 2000,
For a themed issue in allene chemistry, see: (a) Chem. Soc. Rev.,
014, 43, 2879-3206, issue 9, eds. B. Alcaide and P. Almendros. For
2, 639.
5
2
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins