OH- and Cl-Initiated Oxidation of Ethene
J. Phys. Chem. A, Vol. 102, No. 42, 1998 8123
sumed) are the same as those reported by Niki et al.13 In the
upper troposphere, NO levels are again sufficiently high to
control the RO2 reactivity and prompt decomposition of the
excited RO radicals will give a formaldehyde yield of about
0.5 molecules per ethene consumed. The remainder of the
radicals will be thermalized and react essentially exclusively
with O2 at the low temperatures present there, giving a
glycolaldehyde yield of about 0.75. In the cleaner regions of
the free troposphere and in the marine boundary layer, where
NOx concentrations are low, other reactions of the peroxy
radicals will occur (i.e., reaction with HO2 and possibly CH3O2
and other peroxy radicals), and the fate of ethene in these regions
will have to be determined by chemical models.
The oxidation of ethene by chlorine atoms is probably only
of significance in the marine boundary layer, particularly during
Arctic sunrise,47 where evidence for elevated Cl atom concen-
trations have been reported.48 The dominant fate of the ClCH2-
CH2O radical produced in the Cl-initiated oxidation of ethene
will be reaction with O2 to produce ClCH2CHO.
G. L.; Anderson, B.; Sachse, G. W.; Browell, E.; Bachmeier, A. S.; Blake,
D. R.; Heikes, B.; Jacob, D.; Fuelberg, H. E. J. Geophys. Res. 1996, 101,
24203.
(7) Atkinson, R. J. Phys. Chem. Ref. Data 1997, 26, 215.
(8) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.;
Kurylo, M. J.; Howard, C J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M.
J. Chemical kinetics and photochemical data for use in stratospheric
modeling; eValuation number 12; NASA JPL Publ. No. 97-4; 1997.
(9) Miyoshi, A.; Matsui, H.; Washida, N. Chem. Phys. Lett. 1989, 160,
291.
(10) Murrells, T. P.; Jenkin, M. E.; Shalliker, S. J.; Hayman, G. D. J.
Chem. Soc., Faraday Trans. 1991, 87, 2351.
(11) Becker, K. H.; Geiger, H.; Wiesen, P. Chem. Phys. Lett. 1991, 184,
256.
(12) Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. P. J. Phys.
Chem. 1978, 82, 135.
(13) Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. P. Chem.
Phys. Lett. 1981, 80, 499.
(14) Barnes, I.; Becker, K. H.; Ruppert, L. Chem. Phys. Lett. 1993, 203,
295.
(15) Atkinson, R.; Carter, W. P. L. J. Atmos. Chem. 1991, 13, 195.
(16) Atkinson, R. Int. J. Chem. Kinet. 1997, 29, 99.
(17) Wallington, T. J.; Hurley, M. D.; Fracheboud, J. M.; Orlando, J.
J.; Tyndall, G. S.; Sehested, J.; Møgelberg, T. E.; Nielsen, O. J. J. Phys.
Chem. 1996, 100, 18116.
(18) Møgelberg, T. E.; Sehested, J.; Tyndall, G. S.; Orlando, J. J.;
Fracheboud, J.-M.; Wallington, T. J. J. Phys. Chem. A 1997, 101, 2828.
(19) Bilde, M.; Wallington, T. J.; Ferronato, C.; Orlando, J. J.; Tyndall,
G. S.; Estupin˜an, E.; Haberkorn, S. J. Phys. Chem. A 1998, 102, 1976.
(20) Shetter, R. E.; Davidson, J. A.; Cantrell, C. A.; Calvert, J. G. ReV.
Sci. Instrum. 1987, 58, 1427.
(21) Tyndall, G. S.; Orlando, J. J.; Calvert, J. G. EnViron. Sci. Technol.
1995, 28, 202.
(22) Taylor, W. D.; Allston, T. D.; Moscato, M. J.; Fazekas, G. B.;
Kozlowski, R.; Takacs, G. A. Int. J. Chem. Kinet. 1980, 12, 231.
(23) Wallington, T. J.; Andino, J. M.; Lorkovic, I. M.; Kaiser, E. W.;
Marston, G. J. Phys. Chem. 1990, 94, 3644.
Conclusions
The OH-initiated oxidation of ethene has been shown to yield
formaldehyde and glycolaldehyde as major products. The
oxidation in the presence of NOx has been shown to occur via
the formation of an excited oxy radical, HOCH2CH2O*. About
25% of these excited radicals decompose promptly to yield
formaldehyde, while the remainder are thermalized and undergo
competition between reaction 6 and reaction 7. The rate
coefficient ratio k6/k7 has been determined to be (2.0 ×
1025) exp(-4200/T) molecule cm-3 over the temperature range
250-325 K. The results are in good quantitative agreement
with calculations of the decomposition rates of both chemically
activated and thermalized oxy radicals. Of controlling impor-
tance to these decomposition rates is that the intramolecular
H-bonding stabilization by about 2 kcal mol-1 persists in the
transition state, notwithstanding the greatly increased C-C bond
length.38 The yield of formaldehyde in the oxidation of ethene
in the troposphere will be a strong function of temperature and
will range from a maximum value of 1.6 near the Earth’s surface
to a low value of 0.5 in the upper troposphere. In contrast, the
chlorine initiated oxidation of ethene does not lead to C-C bond
scission, even in the presence of NO.
(24) Niki, H.; Maker, P. D.; Savage, C. M.; Hurley, M. D. J. Phys.
Chem. 1987, 91, 2174.
(25) Yarwood, G.; Peng, N.; Niki, H. Int. J. Chem. Kinet. 1992, 24,
369.
(26) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr,
J. A.; Troe, J. J. Phys. Chem. Ref. Data 1992, 21, 1125.
(27) Wallington, T. J.; Andino, J. M.; Japar, S. M. Chem. Phys. Lett.
1990, 165, 189.
(28) Kaiser, E. W.; Wallington, T. J. J. Phys. Chem. 1994, 98, 5679.
(29) Wallington, T. J.; Orlando, J. J.; Tyndall, G. S. J. Phys. Chem.
1995, 99, 9437.
(30) Braun, W.; Herron, J. T.; Kahaner, D. K. Int. J. Chem. Kinet. 1988,
20, 51.
(31) Catoire, V.; Lesclaux, R.; Lightfoot, P. D.; Rayez, M.-T. J. Phys.
Chem. 1994, 98, 2889.
(32) Staffelbach, T. A.; Orlando, J. J.; Tyndall, G. S.; Calvert, J. G. J.
Geophys. Res. 1995, 100, 14189.
(33) Barnes, I.; Bastian, V.; Becker, K. H.; Overath, R.; Tong, Z. Int. J.
Chem. Kinet. 1989, 21, 499.
(34) Jungkamp, T. P. W.; Smith, J. N.; Seinfeld, J. H. J. Phys. Chem.
A 1997, 101, 4392.
(35) Wittig, C.; Nadler, I.; Reisler, H.; Noble, M.; Catanzarite, J.;
Radhakrishnan, G. J. Chem. Phys. 1985, 83, 5581.
(36) Nesbitt, D. J.; Petek, H.; Foltz, M. F.; Filseth, S. V.; Bamford, D.
J.; Moore, C. B. J. Chem. Phys. 1985, 83, 223.
(37) Stein, S. E.; Rabinovitch, B. S. J. Chem. Phys. 1973, 58, 2438.
(38) Vereecken, L.; Peeters, J. Theoretical investigation of the role of
intramolecular hydrogen bonding in â-hydroxyethoxy and â-hydroxyeth-
ylperoxy radicals. J. Phys. Chem. A, submitted.
Acknowledgment. This work was funded by the Upper
Atmosphere Research Program of the NASA Mission to Planet
Earth. NCAR is sponsored by the National Science Foundation.
L.V. and J.P. are indebted to the European Commission for
financial support. Thanks are due to Frank Flocke of NCAR
for his help in the preparation of the methyl nitrite sample and
to Chris Cantrell and Laura Iraci for helpful comments on the
manuscript.
(39) Forst, W. Theory of Unimolecular Reactions; Academic Press: New
York, 1973.
References and Notes
(40) Vereecken, L.; Huyberechts, G.; Peeters, J. J. Chem. Phys. 1997,
106, 6564.
(41) Gillespie, D. T. J. Phys. Chem. 1977, 81, 2340.
(42) Oref, I.; Tardy, D. C. Chem. ReV. 1990, 90, 1407.
(43) Vereecken, L.; Pierloot, K.; Peeters, J. J. Chem. Phys. 1998, 108,
1068.
(44) Troe, J. J. Chem. Phys. 1977, 66, 4758.
(45) Troe, J. J. Chem. Phys. 1979, 83, 114.
(46) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin,
R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, 1.
(47) Barrie, L. A.; Bottenheim, J. W.; Hart, W. R. J. Geophys. Res.
1994, 99, 25313.
(1) Sawada, S.; Totsuka, T. Atmos. EnViron. 1986, 20, 821.
(2) Singh, H. B.; Zimmerman, P. R. Atmospheric distribution and
sources of nonmethane hydrocarbons. In Gaseous Pollutants: Characteriza-
tion and Cycling; Nriagu, J. O., Ed.; John Wiley: New York, 1992; pp
177-235.
(3) Greenberg, J. P.; Zimmerman, P. R. J. Geophys. Res. 1984, 89,
4767.
(4) Rudolph, J. J. Geophys. Res. 1988, 93, 8367.
(5) Blake, N. J.; Blake, D. R.; Sive, B. C.; Chen, T.-Y.; Rowland, F.
S.; Collins, J. E., Jr.; Sachse, G. S.; Anderson, B. E. J. Geophys. Res. 1996,
101, 24151.
(6) Singh, H. B.; Herlth, D.; Kolyer, R.; Chatfield, R.; Viezee, W.;
Salas, L. J.; Chen, Y.; Bradshaw, J. D.; Sandholm, S. T.; Talbot, R.; Gregory,
(48) Jobson, B. T.; Niki, H.; Yokouchi, Y.; Bottenheim, J.; Hopper, F.;
Leaitch, R. J. Geophys. Res. 1994, 99, 25355.