10.1002/ange.202006707
Angewandte Chemie
COMMUNICATION
9b in moderate to good yields (Eq. 4).[26] Treatment of the isolated
epoxide 8a with acetic acid lead to the same regioselective
formation of -acetoxy ketone 10 in 72% yield (Eq. 5). This
straightforward oxidation method allows to make use of the
formed enol ether resulting in an overall C-H functionalization of
the initial propargylic C-H bond.
Keywords: Hypervalent Iodine Reagents • Umpolung • Allyl
Cation • Enol Ethers • Vinylbenziodoxolones
[1]
E. J. Corey, X. M. Cheng, The logic of Chemical Synthesis; J. Wiley:
New-York, 1989.
[2]
[3]
D. Seebach, Angew. Chem. Int. Ed. 1979, 18, 239.
a) V. V. Zhdankin, Hypervalent Iodine Chemistry: Preparation, Structure
and Synthetic Applications of Polyvalent Iodine Compounds, In
Hypervalent Iodine Chemistry; John Wiley & Sons, Ltd, 2013, pp 1–20;
b) A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016, 116, 3328.
a) G. Stork, J. Szmuszkovicz, R. Terrell, A. Brizzolara, H. Landesman, J.
Am. Chem. Soc. 1963, 85, 207; b) T. Mukaiyama, K. Banno, K. Narasaka,
J. Am. Chem. Soc. 1974, 96, 7503; c) K. Gopalaiah, H. B. Kagan, Chem.
Rev. 2011, 111, 4599.
[4]
[5]
[6]
E. A. Merritt, B. Olofsson, Synthesis 2011, 517.
a) S. Arava, J. N. Kumar, S. Maksymenko, M. A. Iron, K. N. Parida, P.
Fristrup, A. M. Szpilman, Angew. Chem., Int. Ed. 2017, 56, 2599; b) S.
Maksymenko, K. N. Parida, G. K. Pathe, A. A. More, Y. B. Lipisa, A. M.
Szpilman, Org. Lett. 2017, 19, 6312; c) A. A. More, G. K. Pathe, K. N.
Parida, S. Maksymenko, Y. B. Lipisa, A. M. Szpilman, J. Org. Chem.
2018, 83, 2442; d) K. N. Parida, G. K. Pathe, S. Maksymenko, A. M.
Szpilman, Beilstein J. Org. Chem. 2018, 14, 992.
[7]
a) Y. Li, D. P. Hari, M. V. Vita, J. Waser, Angew. Chem. Int. Ed. 2016,
55, 4436; b) D. P. Hari, P. Caramenti, J. Waser, J. Acc. Chem. Res. 2018,
51, 3212.
[8]
[9]
B. Liu, C. -H. Lim, G. M. Miyake, J. Am. Chem. Soc. 2018, 140, 12829.
a) P. Caramenti, N. Declas, R. Tessier, M. D. Wodrich, J. Waser, Chem.
Sci. 2019, 10, 3223. Shortly thereafter Itoh and co-workers reported the
addition of amides on unsubstituted EBX reagents: b) D. Shimbo, A.
Shibata, M. Yudasaka, T. Maruyama, N. Tada, B. Uno, A. Itoh, Org. Lett.
2019, 21, 9769.
[10] D. P. Hari, S. Nicolai, J. Waser, Alkynylations and Vinylations. PATAI'S
Chemistry of Functional Groups 2018.
Scheme 3. Product modifications.
[11] T. Okuyama, T. Takino, T. Sueda, M. Ochiai, J. Am. Chem. Soc. 1995,
117, 3360.
[12] a) A. E. Favorskii, J. Russ. Phys.-Chem. Soc. 1894, 26, 559. b) R. B.
Loftfield, J. Am. Chem. Soc. 1951, 73, 4707. Recent examples: c) M.
Harmata, C. Huang, P. Rooshenas, P. R. Schreiner, Angew. Chem., Int.
Ed. 2008, 47, 8696; d) Q. Tang, X. Chen, B. Tiwari, Y. R. Chi, Org. Lett.
2012, 14, 1922; e) B. Yang, X. Zhai, S. Feng, Z. Shao, Org. Chem. Front.
2018, 5, 2794; f) Y. Aota, Y. Doko, T. Kano, K. Maruoka, Eur. J. Org.
Chem. 2020, 2020, 1907.
A speculative mechanism to rationalize the observed oxy-allyl
cation-like reactivity would involve the isomerization of VBX 1 to
the corresponding allyl iodane under basic conditions. The high
leaving group ability of hypervalent iodine[27] would then lead to
the formation of an allyl cation. Indeed, ring-opening of an
adjacent cyclopropane and a [4+3] reaction with furan in low yield
were observed, supporting such an intermediate (See Scheme S5
and S6 in SI). However, the evidence does not allow to exclude a
direct SN2 pathway and further experiments will be needed to
understand the observed transformations.
In conclusion, hypervalent iodine reagents have been used as
oxy-allyl cation surrogates for the stereoselective synthesis of aryl
enol ethers by reaction with phenols. In absence of external
nucleophiles, the in-situ generated benzoate group reacted,
resulting in the formation of allylic esters. The reaction most
probably proceeds via an electrophilic allylic intermediate and
both SN1 or SN2 pathways appear feasible at this stage. The
obtained enol ethers could be transformed into -difunctionalized
ketones under oxidative conditions, demonstrating the synthetic
utility of the transformation.
[13] Selected reviews: a) H. M. R. Hoffmann, Angew. Chem., Int. Ed. 1984,
23, 1; b) I. V. Hartung, H. M. R. Hoffmann, Angew. Chem., Int. Ed. 2004,
43, 1934; c) M. Harmata, Acc. Chem. Res. 2001, 34, 595; d) M. Harmata,
P. Rashatasakhon, Tetrahedron 2003, 59, 2371; e) M. Harmata, Chem.
Commun. 2010, 46, 8886; f) M. Harmata, Chem. Commun. 2010, 46,
8904; g) A. G. Lohse, R. P. Hsung, Chem. Eur. J. 2011, 17, 3812.
[14] Selected reviews: a) T. N. Grant, C. J. Rieder, F. G. West, Chem.
Commun. 2009, 5676; b) T. Vaidya, R. Eisenberg, A. J. Frontier,
ChemCatChem 2011, 3, 1531; c) N. Shimada, C. Stewart, M. A. Tius,
Tetrahedron, 2011, 67, 5851.
[15] a) M. N. Vander Wal, A. K. Dilger, D. W. C. MacMillan, Chem. Sci. 2013,
4, 3075; b) C. Liu, E. Z. Oblak, M. N. Vander Wal, A. K. Dilger, D. K.
Almstead, D. W. C. MacMillan, J. Am. Chem. Soc. 2016, 138, 2134; c) S.
M. Banik, A. Levina, A. M. Hyde, E. N. Jacobsen, Science 2017, 358,
761.
[16] Selected examples: a) K. Lee, D. Y. Kim, D. Y. Oh, Tetrahedron Lett.
1988, 29, 667; b) H. R. Khatri, J. Zhu, Chem. Eur. J. 2012, 18, 12232; c)
H. Nguyen, H. R. Khatri, J. Zhu, Tetrahedron Lett. 2013, 54, 5464; d) B.
Xu, U. K. Tambar, J. Am. Chem. Soc. 2016, 138, 12073; e) B. Xu, U. K.
Tambar, Angew. Chem., Int. Ed. 2017, 56, 9868; f) Y. C. Wu, S. Bouvet,
S. Izquierdo, A. Shafir, Angew. Chem., Int. Ed. 2019, 58, 2617; Reviews:
g) A. Shafir, Tetrahedron Lett. 2016, 57, 2673; h) I. F. D. Hyatt, L. Dave,
N. David, K. Kaur, M. Medard, C. Mowdawalla, Org. Biomol. Chem. 2019,
17, 7822.
Acknowledgements
We thank the Swiss National Science Foundation (SNSF, grant
nos. 200020_182798) and EPFL for financial support.
[17] Z. Wang, L. Jiang, P. Sarró, M. G. Suero, J. Am. Chem. Soc. 2019, 141,
15509.
4
This article is protected by copyright. All rights reserved.