Communications
over MgSO4 and filtered, and the solvent was evaporated to afford
chemically and optically pure (1S,2R)-N-methylephedrine (2.8 g,
97% recovered).
[14] For amino-alcohol–ZnII complexes in enantioselective carbonyl
alkylations, see: a) K. Soai, S. Niwa, S. Chem. Rev. 1992, 92, 833 –
856; b) L. Pu, H.-B. Yu, Chem. Rev. 2001, 101, 757 – 824; and in
carbonyl alkynylations, see: c) E. M. Carreira, Acc. Chem. Res.
2000, 33, 373 – 381; d) L. Pu, Tetrahedron 2003, 59, 9873 – 9886;
e) P. G. Cozzi, R. Hilgraf, N. Zimmermann, Eur. J. Org. Chem.
2004, 4095 – 4105.
Received: December 27, 2004
Revised: February 2, 2005
Published online: May 13, 2005
[15] Other reports of Henry reactions using ZnII–amino-alcohol
complexes have met with essentially complete failure. See: a) G.
Klein, S. Pandiaraju, O. Reiser, O. Tetrahedron Lett. 2002, 43,
7503 – 7506; b) Y.-W. Zhong, P. Tian, G.-Q. Lin, Tetrahedron:
Asymmetry 2004, 15, 771 – 776; and with ZnII complexes with
chiral thioaza ligands, see: c) J. Gao, A. E. Martell, Org. Biomol.
Chem. 2003, 1, 2801 – 2806. Also, see Ref. [10c].
[16] Ligand 10 was prepared by the reductive methylation of indanol.
See: S. Yao, J.-C. Meng, G. Siuzdak, M. G. Finn, J. Org. Chem.
2003, 68, 2540 – 2546. The remaining ligands were purchased
from Aldrich.
[17] Other combinations of metal salts and Brønsted bases were also
examined, with either inferior results or complete failure of the
reaction observed. See Supporting Information for more details.
[18] Remarkably, the reaction between nitromethane (2) and piv-
alaldehyde (1d) under a low catalyst loading of Zn(OTf)2/
iPr2EtN/(+)-NME (10:10:15 mol% each) led to product 3d in
75% yield and in 90% ee.
[19] Under the optimized conditions for nitromethane, the reaction
between nitroethane and benzaldehyde gave a mixture of anti-
and syn-nitroaldols in a 65:35 ratio.
Keywords: amines · amino alcohols · asymmetric catalysis ·
.
Henry reaction · Lewis acids
[1] Comprehensive Asymmetric Catalysis, Vol. III (Eds.: E. N.
Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin, 1999.
[2] a) G. Rosini in Comprehensive Organic Synthesis, Vol. 2 (Eds.:
B. M. Trost, I. Fleming, C. H. Heathcock), Pergamon, New York,
1991, pp. 321 – 340; b) F. A. Luzio, Tetrahedron 2001, 57, 915 –
945.
[3] N. Ono, The Nitro Group in Organic Synthesis, Wiley-VCH, New
York, 2001.
[4] C. Palomo, M. Oiarbide, A. Mielgo, Angew. Chem. 2004, 116,
5558 – 5560; Angew. Chem. Int. Ed. 2004, 43, 5442 – 5444.
[5] a) H. Sasai, T. Suzuki, S. Arai, T. Arai, M. Shibasaki, J. Am.
Chem. Soc. 1992, 114, 4418 – 4420; b) T. Arai, Y. M. A. Yamada,
N. Yamamoto, H. Sasai, M. Shibasaki, Chem. Eur. J. 1996, 2,
1368 – 1372; c) H. Sasai, S. Watanabe, T. Suzuki, M. Shibasaki,
Org. Synth. 2001, 74, 571 – 577 (Coll. Vol. 10).
[6] a) B. M. Trost, V. S. C. Yeh, Angew. Chem. 2002, 114, 889 – 891;
Angew. Chem. Int. Ed. 2002, 41, 861 – 863; b) B. M. Trost, V. S. C.
Yeh, H. Ito, N. Bremeyer, Org. Lett. 2002, 4, 2621 – 2623.
[7] D. A. Evans, D. Seidel, M. Rueping, H. W. Lam, J. T. Shaw, C. W.
Downey, J. Am. Chem. Soc. 2003, 125, 12692 – 12693.
[8] For enantioselective fluoride-mediated Henry reactions that
used silyl nitronates as preactivated forms of nitroalkanes, see:
a) T. Risgaard, K. V. Gothelf, K. A. Jørgensen, Org. Biomol.
Chem. 2003, 1, 153 – 156; b) T. Ooi, K. Doda, K. Maruoka, J. Am.
Chem. Soc. 2003, 125, 2054 – 2055.
[20] a) C. Girard, H. B. Kagan, Angew. Chem. 1998, 110, 3088 – 3127;
Angew. Chem. Int. Ed. 1998, 37, 2922 – 2959; b) H. B. Kagan,
Adv. Synth. Catal. 2001, 343, 227 – 233.
[21] Similar results have also been observed in reactions with
butyraldehyde and heptanal. See Supporting Information for
details.
[22] By using (1R,2S)-(À)-N-methylephedrine as the ligand under
otherwise identical reaction conditions, the corresponding (S)-
nitroaldol was obtained (80% yield, 96% ee). [a]2D5 = + 36.8 (c =
1, CH2Cl2) ([a]D25 = + 29.39 (c = 3.39, CH2Cl2), 93% ee).[7]
[9] For reviews on the concept of dual acid/base catalysis, see: a) M.
Shibasaki, N. Yoshikawa, Chem. Rev. 2002, 102, 2187 – 2209;
b) M. Shibasaki, M. Kanai, K. Funabashi Chem. Commun. 2002,
1989 – 1999; c) G. J. Rowlands, Tetrahedron 2001, 57, 1865 –
1882; d) J.-A. Ma, D. Cahard, Angew. Chem. 2004, 116, 4666 –
4683; Angew. Chem. Int. Ed. 2004, 43, 4566 – 4583.
[10] For reactions employing bis(oxazoline)-based CuII complexes
and triethylamine, see: a) C. Christensen, K. Juhl, K. A.
Jørgensen, Chem. Commun. 2001, 2222 – 2223; b) C. Christen-
sen, K. Juhl, R. G. Hazell, K. A. Jørgensen, J. Org. Chem. 2002,
67, 4875 – 4881; c) S.-F. Lu, D.-M. Du, S.-W. Zhang, J. Xu,
Tetrahedron: Asymmetry 2004, 15, 3433 – 3441; For reactions
employing chiral imine based CoII complexes and diisopropyle-
thylamine, see: d) Y. Kogami, T. Nakajima, T. Ashizawa, S.
Kezuka, T. Ikeno, T. Yamada, Chem. Lett. 2004, 614 – 615; e) Y.
Kogami, T. Nakajima, T. Ikeno, T. Yamada, Synthesis 2004,
1947 – 1950.
[11] For a solution to this problem within the context of the double
catalytic activation strategy, see: S. Kanemasa, K. Itoh, Eur. J.
Org. Chem. 2004, 4741 – 4753.
[12] Base-catalyzed, nonselective Henry reactions are long known.
For the incidence of such a process in the efficiency of
asymmetric catalysis, see Ref. [10b].
[13] For the enolization of carbonyl compounds using metal triflates
in combination with tertiary amines, see: a) D. A. Evans, J. S.
Tedrow, J. T. Shaw, C. W. Downey, J. Am. Chem. Soc. 2002, 124,
392 – 393; b) D. A. Evans, C. W. Downey, J. L. Hubbs, J. Am.
Chem. Soc. 2003, 125, 8706 – 8707; c) C. J. Cowden, I. Paterson,
Org. React. 1997, 51, 1 – 200; d) Modern Aldol Reactions (Ed.: R.
Mahrwald), Wiley-VCH, Weinheim, 2004.
3884
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 3881 –3884