R. V. Kiran, C. F. Hogan, B. D. James, D. J. D. Wilson
FULL PAPER
Synthesis: The syntheses of [Ir(ppy)
1
2
Cl]
2
, [Ir(ppy)
2
phen]Cl and
of orange pure product. H NMR (300 MHz, CD
2
Cl
2
): δ = 6.48
[
Ir(ppy)
2
dpp][PF
6
] were carried out using modifications of pre-
(d, J = 7.5 Hz, 2 H), 6.97 (t, J = 6.6 Hz, 2 H), 7.04 (t, J = 7.5 Hz,
2 H), 7.16 (t, J = 7.5 Hz, 2 H), 7.51 (d, J = 6.0 Hz, 2 H), 7.65 (m,
viously published methods.
1
2
0 H), 7.75 (d, J = 5.4 Hz, 2 H), 7.82 (m, 4 H), 8.01 (d, J = 8.0 Hz,
[
Ir(ppy) Cl] : The dimer was synthesized by modifying the pro-
2
2
1
3
H), 8.19 (s, 2 H), 8.40 (d, J = 5.4 Hz, 2 H) ppm. C NMR
Cl ): δ = 119.74, 122.67, 123.11, 124.80, 126.20,
[18]
cedure reported by Sprouse, which involved reacting iridium tri-
chloride with 2-phenylpyridine and purifying using flash
(
300 MHz, CD
2
2
1
1
26.72, 129.05, 129.43, 129.54, 129.77, 130.59, 131.65, 135.24,
38.08, 143.75, 147.30, 148.56, 149.72, 150.55, 150.96, 167.73 ppm.
chromatography (silica/dichloromethane) producing an 85% yield.
1
2 2
H NMR (300 MHz, CD Cl ): δ = 5.89 (d, J = 6.9 Hz, 4 H), 6.62
t, J = 7.6 Hz, 4 H), 6.80 (t, J = 6.4 Hz, 4 H), 6.83 (t, J = 6.4 Hz,
C
46
H
32
F
6
4 2
IrN P·2H O (978.0 + 36.0): calcd. C 54.43, H 3.58, N
(
4
5.52; found C 54.36, H 3.48, N 5.69. ESI-MS: m/z = 833.2 [M –
H), 7.57 (d, J = 7.7 Hz, 4 H), 7.80 (t, J = 6.5 Hz, 4 H), 7.94 (d,
+
6
PF ] .
13
J = 7.9 Hz, 4 H), 9.23 (d, J = 5.8 Hz, 4 H) ppm. C NMR
300 MHz, CDCl ): δ = 118.70, 122.50, 123.60, 129.01, 130.30,
36.60, 144.02, 144.80, 151.50, 168.01 ppm. Ir
1072.11): calcd. C 49.29, H 3.01, N 5.23; found C 49.04, H 3.23,
N 5.05.
(
1
(
3
Supporting Information (see footnote on the first page of this arti-
cle): Further details of the structural characterisation, electrochem-
ical properties, spectroscopic properties and results from theoretical
calculations.
C
44
H32Cl
2
2 4
N
[
Ir(ppy)
shown in Scheme 1. [Ir(ppy)
phenanthrolinedisulfonic disodium (99.9%, Aldrich) (171 mg,
.29 mmol) were heated to reflux in 90:10 ethanol/water (150 mL)
2
BPS]Cl: [Ir(ppy)
2
BPS]Cl was synthesized using the route
2
Cl] (154 mg, 0.14 mmol) and batho-
2
Acknowledgments
0
under nitrogen for 6 h. The mixture, which had changed colour
from yellow to luminescent orange, was rotary evaporated to give
crude orange crystals. The crude product was purified using a Se-
phadex LH-20 column (length 10 cm, diameter 2 cm) with a 20:80
mixture of methanol/ethanol. The purified solution was rotary
evaporated and the solid recovered. The complex was dried over-
night to obtain 84% yield of a bright orange powder, which was
characterized using NMR, MS, IR and microanalysis. The complex
contains chloride counterions in the solid state because the sulfo-
nate groups retain their sodium counterions. Nonetheless, the com-
We would like to acknowledge helpful discussions on this work
with Dr. John Christie, La Trobe University. We acknowledge the
Australian research council (ARC) for a discovery project (grant
number DP1094179). The authors acknowledge support from the
National Computational Infrastructure National Facility (NCI-
NF), Victorian Partnership for Advanced Computing (VPAC), Vic-
torian Life Science Computing Initiative (VLSCI) and the high-
performance computing facility of La Trobe University.
[
1] W.-Y. Lai, J. W. Levell, A. C. Jackson, S.-C. Lo, P. V. Bern-
plex carries a net negative charge when dissolved in aqueous or
hardt, I. D. W. Samuel, P. L. Burn, Macromolecules 2010, 43,
1
organic solution. H NMR (300 MHz, CD
3
OD): δ = 6.36 (d, J =
6986–6994.
7
7
2
.5 Hz, 2 H), 6.86 (t, J = 7.4 Hz, 2 H), 6.96 (t, J = 7.5 Hz, 4 H),
.59 (d, J = 6.1 Hz, 2 H, 6-H), 7.62 (s, 2 H), 7.66 (d, J = 4.34 Hz,
H), 7.73 (d, J = 5.2 Hz, 2 H8) 7.81 (m, 4 H), 8.02 (m, 4 H), 8.09
[
2] a) J. I. Goldsmith, W. R. Hudson, M. S. Lowery, T. H. An-
derson, S. Bernhard, J. Am. Chem. Soc. 2005, 127, 7502–7510;
b) M. Kirch, J. M. Lehn, J. P. Sauvage, Helv. Chim. Acta 1979,
62, 1345–1384.
(d, J = 8.1 Hz, 2 H, 4-H), 8.09 (s, 2 H), 8.34 (d, J = 5.2 Hz, 2 H,
5
1
1
1
-H) ppm. 13C NMR (300 MHz, CD
OD): δ = 119.31, 121.97, [3] K. K. W. Lo, D. C. M. Ng, C. K. Chung, Organometallics 2001,
3
20, 4999–5001.
22.83, 124.32, 125.67, 126.59, 128.53, 129.02, 129.77, 130.91,
31.22, 135.42, 137.94, 143.74, 145.71, 146.97, 148.52, 149.70,
50.16, 167.44, ppm. C46H38ClIrN Na O S ·2H O (1080.6 + 36.0):
4 2 6 2 2
[
4] a) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson,
A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice,
Chem. Rev. 1997, 97, 1515–1566; b) J. N. Demas, B. A. De-
Graff, Coord. Chem. Rev. 2001, 211, 317–351; c) W. S. Tang,
X. X. Lu, K. M. C. Wong, V. W. W. Yam, J. Mater. Chem.
calcd. C 47.01, H 3.46, Cl 3.04, N 4.82, S 5.55; found C 47.50, H
+
3
.46, Cl 3.09, N 4.82, S 5.55. ESI-MS: m/z = 1037.09 [M – Cl] .
–1
IR: ν˜ 3431 (OH, br.) cm .
Ir(ppy) phen]Cl: [Ir(ppy) phen]Cl was synthesized by using the
procedure described by King (similar to Scheme 1).
reacting [Ir(ppy) Cl] with 1,10-phenanthroline in CH
ing the product using an ethanolic sephadex LH-20 column, recrys-
tallizing from CH Cl and toluene to yield 80% of orange pure
product. H NMR (300 MHz, CDCl ): δ = 6.41 (d, J = 7.5 Hz, 2
H), 6.93 (t, J = 6.6 Hz, 2 H), 6.99 (t, J = 7.5 Hz, 2 H), 7.10 (t, J =
.5 Hz, 2 H), 7.33 (d, J = 6.6 Hz, 2 H), 7.76 (m, 4 H), 7.94 (m, 4
H), 8.26 (d, J = 5.0 Hz, 2 H), 8.44 (s, 2 H), 8.97 (d, J = 8.2 Hz, 2
2005, 15, 2714–2720; d) Z. H. Lin, Y. G. Zhao, C. Y. Duan,
B. G. Zhang, Z. P. Bai, Dalton Trans. 2006, 3678–3684; e) R. P.
Brinas, T. Troxler, R. M. Hochstrasser, S. A. Vinogradov, J.
Am. Chem. Soc. 2005, 127, 11851–11862.
[
2
2
[23]
It involved
Cl , purify-
2
2
2
2
[
5] a) S. Zanarini, E. Rampazzo, S. Bonacchi, R. Juris, M. Mar-
caccio, M. Montalti, F. Paolucci, L. Prodi, J. Am. Chem. Soc.
2
2
2
009, 131, 14208–14209; b) J. L. Delaney, C. F. Hogan, J. Tian,
1
3
W. Shen, Anal. Chem. 2011, 83, 1300–1306.
[6] G. J. Barbante, C. F. Hogan, D. J. D. Wilson, N. A. Lewcenko,
F. M. Pfeffer, N. W. Barnett, P. S. Francis, Analyst 2011, 136,
7
1329–1338.
H) ppm. 13C NMR (300 MHz, CDCl
): δ = 119.46, 122.63, 123.08,
24.64, 126.56, 128.89, 130.67, 131.53, 131.66, 137.95, 139.29,
43.39, 146.40, 148.25, 149.32, 150.45, 167.69 ppm.
24ClIrN ·2.5H O (716.3 + 45.0): calcd. C 53.64, H 3.84, Cl
.65, N 7.36; found C 53.49, H 3.77, Cl 4.05, N 7.08. ESI-MS: m/z
[7] C. Ulbricht, B. Beyer, C. Friebe, A. Winter, U. S. Schubert,
3
Adv. Mater. (Weinheim, Ger.) 2009, 21, 4418–4441.
1
1
[
8] a) R. V. Kiran, E. M. Zammit, C. F. Hogan, B. D. James, N. W.
Barnett, P. S. Francis, Analyst 2009, 134, 1297–1298; b) Q.
Zhao, S. Liu, M. Shi, C. Wang, M. Yu, L. Li, F. Li, T. Yi, C.
Huang, Inorg. Chem. 2006, 45, 6152–6160; c) G. Di Marco, M.
Lanza, M. Mamo, I. Stefio, C. Di Pietro, G. Romeo, S. Cam-
pagna, Anal. Chem. 1998, 70, 5019–5023; d) W. Goodall,
J. A. G. Williams, J. Chem. Soc., Dalton Trans. 2000, 2893–
C
34
H
4
2
4
=
+
681.1 [M – Cl] .
Ir(ppy) dpp][PF ]: [Ir(ppy)
modified procedure from Bolink (Scheme 1). It involved reacting
Ir(ppy) Cl] with 4,7-diphenyl-1,10-phenanthroline in CH Cl be-
fore precipitating the product as a PF salt, which was purified
further using an ethanolic Sephadex LH-20 column, yielding 80%
[
2
6
2 6
dpp][PF ] was synthesized using a
[13]
2895.
[
2
2
2
2
[
9] J. S.-Y. Lau, P.-K. Lee, K. H.-K. Tsang, C. H.-C. Ng, Y.-W.
Lam, S.-H. Cheng, K. K.-W. Lo, Inorg. Chem. 2008, 47, 708–
718.
6
4824
www.eurjic.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2011, 4816–4825