21 I. Yang, E. Kim, J. Kang, H. Han, S. Sul, S.-B. Park and S.-K. Kim,
Chem. Commun., 2012, 48, 3839.
Notes and references
22 A. Navarro-Vázquez, J.-L. Alonso-Gómez, J. Lugtenburg and
M.-M. Cid, Tetrahedron, 2010, 66, 3855.
1 (a) V. Cucciola, A. Borriello, A. Oliva, P. Galletti, V. Zappia and F. Della
Ragione, Cell Cycle, 2007, 6, 2495; (b) J. A. Baur and D. A. Sinclair,
Nat. Rev. Drug Discovery, 2006, 5, 493; (c) C. Counet, D. Callemien and
S. Collin, Food Chem., 2006, 98, 649; (d) A. L. Holme and S. Pervaiz,
J. Bioenerg. Biomembr., 2007, 39, 59; (e) P. Jeandet, R. Bessis,
B. F. Maum, M. Philippe, D. Peyron and P. Trollat, J. Agric. Food Chem.,
1995, 43, 316.
2 E. Frankel, A. Waterhouse and J. Kinsella, Lancet, 1993, 341, 1103;
M. Kaeberlein, T. McDonagh, B. Heltweg, J. Hixon, E. A. Westman, S.
D. Caldwel, A. Napper, R. Curtis, P. S. DiStefano, S. Fields, A. Bedalov
and B. K. Kennedy, J. Biol. Chem., 2005, 280, 17038.
23 G. B. Kistiakowsky and W. R. Smith, J. Am. Chem. Soc., 1934, 56, 638.
24 (a) J. Quenneville and T. J. Martíınez, J. Phys. Chem. A, 2003, 107, 829–
837; (b) J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102,
7211–7218; (c) D. H. Waldeck, Chem. Rev., 1991, 91, 415–436;
(d) J. Baskin, L. Baares, S. Pedersen and A. Zewail, J. Phys. Chem.,
1996, 100, 11920.
25 The theoretically obtained excitation energies (282 and 297 nm for cis
and trans-resveratrol, respectively) were computed with a second order
perturbative correction on the CASSCF(2,2) solutions and they agree
very well with the experimental data (288 and 308 nm, respectively). See:
B. C. Trela and A. L. Waterhouse, J. Agric. Food Chem., 1996, 44, 1253.
26 (a) I. Fernández, F. P. Cossío and M. A. Sierra, Chem. Rev., 2009, 109,
6687–6711 and references therein; (b) I. Fernández and F. P. Cossío,
Curr. Org. Chem., 2010, 14, 1578.
3 J. L. Ingham, Phytochemistry, 1976, 15, 1791.
4 (a) O. B. Maksimov, O. Krivoshchekova, L. S. Stepanenko and
L. V. Boguslavskaya, Chem. Nat. Compd., 1985, 21, 735;
(b) B. Fauconneau, P. Waffo-Teguo, F. Huguet, L. Barrier, A. Decendit
and J.-M. Merillon, Life Sci., 1997, 61, 2103.
27 (a) R. B. Woodward and R. Hoffmann, J. Am. Chem. Soc., 1965, 87,
395; (b) R. B. Woodward and R. Hoffmann, Angew. Chem., Int. Ed. Eng.,
1969, 8, 781.
28 Irradiation in the presence of iodine led to periodination of the dihydroxy
benzene ring of resveratrol (see F. L. Weitl, J. Org. Chem., 1976, 41,
2044).
29 The final composition of the reaction mixture is also dependent on the
distance between the light source and the reaction flask. The irradiation of
a 0.2 mM aqueous ethanolic solution with a 450 W lamp during 5 min
yielded a 1 : 2 trans/cis mixture ratio when the reaction flask was placed
25 cm away from the light source whereas a 1 : 4 trans/cis ratio was
obtained when it was placed 5 cm apart.
5 (a) M. Q. Holmes-McNary and A. S. Baldwin Jr., FASEB J., 1998, 12,
A472; (b) K. T. Howitz, K. J. Bitterman, H. Y. Cohen, D. W. Lamming,
S. Lavu, J. G. Wood, R. E. Zipkin, P. Chung, A. Kisielewski,
L.-L. Zhang, B. Scherer and D. A. Sinclair, Nature, 2003, 425, 191;
(c) J. A. Baur, K. J. Pearson, N. L. Price, H. A. Jamieson, C. Lerin,
A. Kalra, V. V. Prabhu, J. S. Allard, G. Lopez-Lluch, K. Lewis,
P. J. Pistell, S. Poosala, K. G. Becker, O. Boss, D. Gwinn, M. Wang,
S. Ramaswamy, K. W. Fishbein, R. G. Spencer, E. G. Lakatta, D. Le
Couteur, R. J. Shaw, P. Navas, P. Puigserver, D. K. Ingram, R. de Cabo
and D. A. Sinclair, Nature, 2006, 444, 337.
6 (a) S. Quideau, D. Deffieux and L. Pouységu, Angew. Chem., Int. Ed.,
2012, 50, 6824; (b) S. Quideau, D. Deffieux, C. Douat-Casassus and
L. Pouységu, Angew. Chem., Int. Ed., 2011, 50, 586 and references
therein.
7 R. Amorati, F. Ferroni, G. F. Pedulli and L. Valgimigli, J. Org. Chem.,
2003, 68, 9654.
8 (a) C. R. Pace-Asciak, S. Hahn, E. P. Diamandis, G. Soleas and
D. M. Goldberg, Clin. Chim. Acta, 1995, 235, 207; (b) R. Amorati and
L. Valgimigli, Org. Biomol. Chem., 2012, 10, 4147.
9 (a) L. Stivala, M. Savio, F. Carafoli, P. Perucca, G. Bianchi, L. Forti,
U. Pagnoni, A. Albini, E. Prosperi and V. Vannini, J. Biol. Chem., 2001,
276, 22686; (b) S. Xu, G. Wang, H.-M. Liu, L.-J. Wang and H.-F. Wang,
J. Mol. Struct., 2007, 89, 79.
30 Spectrometric
Identification
of
Organic
Compounds,
ed.
R. M. Silverstein, F. X. Webster and D. Kiemle, Wiley-VCH, 7th edn,
2005.
31 HPLC conditions Nova-Pak C-18 column, using 22 : 78 de MeCN–
AcOH 3.2%, as an eluent, 0.8 mL min−1 and a diode array detector (λ =
300 nm).
32 APCI conditions: kinetex C-18 column, 100 × 2.1 mm, mobile phase
(19 : 81 MeCN–AcOH 4.1%).
33 Spectroscopic data agree with those reported by P. Koh, K. H. Park,
J. Jung, H. Yang, K. H. Mok and Y. Lim, Org. Mag. Res., 2001, 39, 768.
34 Spectroscopic data agree with those reported by M. E. Jung and M.
A. Lyster, J. Org. Chem., 1977, 42, 3761.
35 Compound 10 proved to be highly unstable in the reaction medium. Spec-
troscopic data agree with those reported by: A. Stossel and J. B. Stothers,
Org. Mag. Res., 1982, 20, 166. Other demethylating agents such as LiBr
or HBr were unsuccessful and, when PyHCl at 220 °C was used we were
not able to isolate compound 10 in pure form.
36 See Fig. 1S in the ESI† showing the decomposition of compound 10.
37 (a) K. R. Kopecky and C. Mumford, Can. J. Chem., 1969, 47, 709;
(b) K. R. Kopecky, J. E. Filby, C. Mumford, P. A. Lockwood and
J.-Y. Ding, Can. J. Chem., 1975, 53, 1103; (c) M. K. Eberhardt and
W. Velasco, Tetrahedron Lett., 1992, 33, 1165; (d) J. A. Celaje, D. Zhang,
A. M. Guerrero and M. Selke, Org. Lett., 2011, 13, 4846.
38 When EOM-8 was irradiatedin the absence of oxygen, but after adding
H2O2 to the solution in order to avoid the formation of the oxetane but
still allowing the oxidative photocyclization to occur, the 1H-NMR of the
reaction mixture showed residual signals of the corresponding aldehydes.
These results suggest the presence of only traces of these photolytic pro-
ducts. See Fig. 2S in the ESI.†
10 H. Cao, X. Pan, C. Li, C. Zhou, F. Deng and T. Li, Bioorg. Med. Chem.
Lett., 2003, 13, 1869.
11 (a) M. Leopoldini, N. Russo and M. Toscano, Food Chem., 2011, 125,
288; (b) L.-X. Cheng, X.-L. Jin, Q.-F. Teng, J. Chang, X.-J. Yao, F. Dai,
Y.-P. Qian, J.-J. Tang, X.-Z. Li and B. Zhou, Org. Biomol. Chem., 2010,
8, 1058; (c) C. Iuga, J. R. Alvarez-Idaboy and N. Russo, J. Org. Chem.,
2012, 77, 3868.
12 S.-J. Lin, M. Kaeberlein, A. A. Andalis, L. A. Sturtz, P.-A. Defossez,
V. C. Culotta, G. R. Fink and L. Guarente, Nature, 2002, 418, 344.
13 (a) T. Bass, D. Wienkove, K. Houthoofd, D. Gems and L. Patridge,
Mech. Ageing Dev., 2007, 128, 546; (b) S. Zou, J. R. Carey, P. Liedo,
D. K. Ingram, H.-G. Möller, J.-L. Wang, F. Yao, B. Yu and A. Zhou, Exp.
Gerontol., 2009, 44, 472.
14 (a) B. Draczynska-Lusiak, Y. M. Chen and A. Y. Sun, NeuroReport,
1998, 9, 527; (b) H. Ferry-Dumazet, O. Garnier, M. Mamani-Matsuda,
J. Vercauteren, F. Belloc, C. Billiard, M. Dupouy, D. Thiolat, J. P. Kolb,
G. Marit, J. Reiffers and M. D. Mossalayi, Carcinogenesis, 2002, 23,
1327.
39 P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136, B864.
40 W. Kohn and L. Sham, Phys. Rev. A, 1965, 140, A1133.
15 M. Kaeberlein, T. McDonagh, B. Heltweg, J. Hixon, E. A. Westman, S.
D. Caldwel, A. Napper, R. Curtis, P. S. DiStefano, S. Fields, A. Bedalov
and B. K. Kennedy, J. Biol. Chem., 2005, 280, 17038.
16 (a) B. C. Trela and A. L. Waterhouse, J. Agr. Food. Chem., 1996, 44,
1253–1257; (b) E. Bernard, P. Britz-McKibbinn and N. Gernigon,
J. Chem. Educ., 2007, 84, 1159.
17 J. P. Roggero and C. García-Parrilla, Sci. Aliments, 1995, 15, 411.
18 (a) T. Galeano-Diaz, I. Durán-Merás and D. Airado-Rodríguez, J. Sep.
Sci., 2007, 30, 3110; (b) J. Tříska, N. Vrchotová, J. Olejníčková, R. Jílek
and R. Sotolář, Molecules, 2012, 17, 2773.
19 (a) G. Montsko, M. S. P. Nikfardjam, Z. Szabo, K. Boddi, T. Lorand,
R. Ohmacht and L. Mark, J. Photochem. Photobiol,. A, 2008, 196, 44;
(b) J. López-Hernández, P. Paseiro-Losada, A. T. Sanches-Silva and
M. A. Lage-Yusti, Eur. Food Res.Technol., 2007, 225, 789.
20 J.-H. Ho, T.-I. Ho and R. S. H. Liu, Org. Lett., 2001, 3, 409.
41 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson,
H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov,
J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,
M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,
G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 9175–9182 | 9181