Angewandte Chemie International Edition
10.1002/anie.201806871
COMMUNICATION
substitution by glucuronic acid, also the patterning of arabinose
substituents on the xylan backbone may be important. These
interactions influence both strength and digestibility of plant cell
walls.
In summary, we have explored glycosynthase technology
for the polymerization of seven mostly chemically synthesized
arabinoxylan oligosaccharides into artificial polysaccharides with
well-defined branching patterns. The obtained polysaccharides
contained polysaccharide chains with molecular masses up to
[7]
T. Köhnke, Å. Östlund, H. Brelid, Biomacromolecules 2011, 12, 2633-
2
641.
K. A. Andrewartha, D. R. Phillips, B. A. Stone, Carbohydr. Res. 1979,
7, 191-204.
[
[
8]
9]
7
a) T. J. Bosmans, A. M. Stépán, G. Toriz, S. Renneckar, E. Karabulut,
L. Wågberg, P. Gatenholm, Biomacromolecules 2014, 15, 924-930; b)
Å. Linder, R. Bergman, A. Bodin, P. Gatenholm, Langmuir 2003, 19,
5072-5077; c) M. A. Kabel, H. van den Borne, J.-P. Vincken, A. G. J.
Voragen, H. A. Schols, Carbohydr. Polym. 2007, 69, 94-105.
[10] a) T. J. Simmons, J. C. Mortimer, O. D. Bernardinelli, A.-C. Pöppler, S.
P. Brown, E. R. deAzevedo, R. Dupree, P. Dupree, Nat. Comm. 2016,
80 kDa (606 monosaccharides), which are to the best of our
7, 13902; b) A. Martínez-Abad, J. Berglund, G. Toriz, P. Gatenholm, G.
knowledge the largest polysaccharides produced by
glycosynthase technology to date. Due to the defined nature of
the polysaccharide branching patterns, specific properties were
observed for particular members of the prepared arabinoxylan
collection rather than the simple linear correlation between e.g.
Henriksson, M. Lindström, J. Wohlert, F. Vilaplana, Plant Physiol. 2017.
11] M. Busse-Wicher, A. Li, R. L. Silveira, C. S. Pereira, T. Tryfona, T. C. F.
Gomes, M. S. Skaf, P. Dupree, Plant Physiol. 2016, 171, 2418.
12] L. F. Mackenzie, Q. Wang, R. A. J. Warren, S. G. Withers, J. Am. Chem.
Soc. 1998, 120, 5583-5584.
[
[
[
9a]
crystallinity and degree of substitution reported previously.
[13] a) L.-X. Wang, W. Huang, Curr. Opin. Chem. Biol. 2009, 13, 592-600;
b) P. M. Danby, S. G. Withers, ACS Chem. Biol. 2016, 11, 1784-1794.
[
30]
Currently, we evaluate their immunomodulatory properties as
well as their potential to serve as substrates in assays that aim
[
14] a) O. Spadiut, F. M. Ibatullin, J. Peart, F. Gullfot, C. Martinez-Fleites, M.
Ruda, C. Xu, G. Sundqvist, G. J. Davies, H. Brumer, J. Am. Chem. Soc.
2011, 133, 10892-10900; b) X. Pérez, M. Faijes, A. Planas,
Biomacromolecules 2011, 12, 494-501; c) M. Faijes, A. Planas,
Carbohydr. Res. 2007, 342, 1581-1594; d) A. Ben-David, T. Bravman,
Y. S. Balazs, M. Czjzek, D. Schomburg, G. Shoham, Y. Shoham,
ChemBioChem 2007, 8, 2145-2151; e) Y.-W. Kim, D. T. Fox, O.
Hekmat, T. Kantner, L. P. McIntosh, R. A. J. Warren, S. G. Withers, Org.
Biomol. Chem. 2006, 4, 2025-2032; f) M. Sugimura, M. Nishimoto, M.
Kitaoka, Biosci. Biotechnol. Biochem. 2006, 70, 1210-1217; g) B.
Cobucci-Ponzano, M. Moracci, Nat. Products Rep. 2012, 29, 697-709;
h) S. Fort, V. Boyer, L. Greffe, G. J. Davies, O. Moroz, L. Christiansen,
M. Schülein, S. Cottaz, H. Driguez, J. Am. Chem. Soc. 2000, 122,
5429-5437.
[
25b,
at determining the specificities of xylan-degrading enzymes.
2
5c]
Acknowledgements
We gratefully acknowledge financial support from the Max
Planck Society and the German Research Foundation (DFG,
Emmy Noether program PF850/1-1 to FP and SFB 765). The
Knut and Alice Wallenberg Foundation is acknowledged for
funding the Wallenberg Wood Science Center. We thank Maiko
Schulze and Suvrat Chowdhary for experimental help. We thank
Ingrid Zenke for recording X-ray diffractograms and Janete
Rodriguez and Dr. Luca Bertinetti for helpful discussions. The
plasmid for expression of XynAE265G was kindly provided by
[
[
15] F. Gullfot, F. M. Ibatullin, G. Sundqvist, G. J. Davies, H. Brumer,
Biomacromolecules 2009, 10, 1782-1788.
16] a) V. Lombard, H. Golaconda Ramulu, E. Drula, P. M. Coutinho, B.
Henrissat, Nucleic Acids Res. 2014, 42, D490-D495; b) T. Bravman, V.
Belakhov, D. Solomon, G. Shoham, B. Henrissat, T. Baasov, Y.
Shoham, J. Biol. Chem. 2003, 278, 26742-26749.
Prof. Dr. Yuval Shoham (Technion
Technology).
– Israel Institute of
[17] a) S. L. Maslen, F. Goubet, A. Adam, P. Dupree, E. Stephens,
Carbohydr. Res. 2007, 342, 724-735; b) M. Vardakou, P. Katapodis, M.
Samiotaki, D. Kekos, G. Panayotou, P. Christakopoulos, Int. J. Biol.
Macromol. 2003, 33, 129-134; c) P. Biely, M. Vršanská, M. Tenkanen,
D. Kluepfel, J. Biotechnol. 1997, 57, 151-166; d) D. Senf, C. Ruprecht,
G. H. M. deKruijff, S. O. Simonetti, F. Schuhmacher, P. H. Seeberger, F.
Pfrengle, Chem. Eur. J. 2017, 23, 3197-3205.
Keywords: Carbohydrates • Chemo-enzymatic synthesis • Plant
cell wall • Xylan • Glycosynthases
[
1]
J. Song, C. Chen, S. Zhu, M. Zhu, J. Dai, U. Ray, Y. Li, Y. Kuang, Y. Li,
N. Quispe, Y. Yao, A. Gong, U. H. Leiste, H. A. Bruck, J. Y. Zhu, A.
Vellore, H. Li, M. L. Minus, Z. Jia, A. Martini, T. Li, L. Hu, Nature 2018,
[18] a) D. Schmidt, F. Schuhmacher, A. Geissner, P. H. Seeberger, F.
Pfrengle, Chem. Eur. J. 2015, 21, 5709-5713; b) F. Pfrengle, Curr. Opin.
Chem. Biol. 2017, 40, 145-151.
554, 224.
[
[
2]
3]
a) E. A. Rennie, H. V. Scheller, Curr. Opin. Biotechnol. 2014, 26, 100-
[19] S. Fort, L. Christiansen, M. Schülein, S. Cottaz, H. Drigueza, Isr. J.
Chem. 2000, 40, 217-221.
107; b) H. V. Scheller, P. Ulvskov, Annu. Rev. Plant Biol. 2010, 61,
263-289.
[20] R. Fauré, M. Saura-Valls, H. Brumer, A. Planas, S. Cottaz, H. Driguez,
J. Org. Chem. 2006, 71, 5151-5161.
a) A. Ebringerová, T. Heinze, Macromol. Rapid Commun. 2000, 21,
42-556; b) A. Ebringerová, Z. Hromádková, T. Heinze, in
Polysaccharides I, Vol. 186 (Ed.: T. Heinze), Springer Berlin Heidelberg,
005, pp. 1-67.
5
[21] a) M. Yokoyama, Carbohydr. Res. 2000, 327, 5-14; b) M. Shimizu, H.
Togo, M. Yokoyama, Synthesis 1998, 1998, 799-822; c) J. Jünnemann,
J. Thiem, C. Pedersen, Carbohydr. Res. 1993, 249, 91-94; d) P. J.
Card, J. Carbohdr. Chem. 1985, 4, 451-487; e) M. Hayashi, S.-i.
Hashimoto, R. Noyori, Chem. Lett. 1984, 13, 1747-1750.
2
[
[
[
4]
5]
6]
a) A. M. Neyrinck, V. F. Van Hee, N. Piront, F. De Backer, O. Toussaint,
P. D. Cani, N. M. Delzenne, Nutr. Diabetes 2012, 2, e28; b) M. Mendis,
E. Leclerc, S. Simsek, Carbohydr. Polym. 2016, 139, 159-166; c) J. Liu,
S. Willför, C. Xu, Bioact. Carbohydr. Dietary Fibre 2015, 5, 31-61.
a) N. M. L. Hansen, D. Plackett, Biomacromolecules 2008, 9, 1493-
[22] A. Bongini, G. Cardillo, M. Orena, S. Sandri, Synthesis 1979, 618-620.
[23] A. Steinmann, J. Thimm, M. Matwiejuk, J. Thiem, Macromolecules
2010, 43, 3606-3612.
1
505; b) A. Escalante, A. Gonçalves, A. Bodin, A. Stepan, C.
Sandström, G. Toriz, P. Gatenholm, Carbohydr. Polym. 2012, 87, 2381-
387.
[24] G. H. Posner, S. R. Haines, Tetrahedron Lett. 1985, 26, 5-8.
[25] a) S. Lagaert, A. Pollet, C. M. Courtin, G. Volckaert, Biotechnol. Adv.
2014, 32, 316-332; b) A. Pollet, J. A. Delcour, C. M. Courtin, Crit. Rev.
Biotechnol. 2010, 30, 176-191; c) T. Collins, C. Gerday, G. Feller,
FEMS Microbiol. Rev. 2005, 29, 3-23.
2
A. L. Deutschle, K. Römhild, F. Meister, R. Janzon, C. Riegert, B.
Saake, Carbohydr. Polym. 2014, 102, 627-635.
This article is protected by copyright. All rights reserved.