Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Organic Letters
Letter
(7) Kim, K.; Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim, J.
Chem. Soc. Rev. 2007, 36 (2), 267−279.
second structure (Figure 2, bottom), binding of the chloride
anion by all available NH amide protons stabilizes the folded
conformation.
The reactive groups are then brought into close proximity by
H-bond formation between the amine and oxygen atom of the
ester group. Interestingly, computational calculations for
complexes of the linear intermediate with either water and
methanol suggest that they are more conducive to the
formation of oligomers than the desired macrocycle (Figure
In summary, 26-membered N-Boc-protected macrocycle 6
was prepared in a four-step synthesis (37% overall yield)
starting from commercially available and cheap precursors
utilizing only single column chromatography. Its subsequent
deprotection and site-selective postfunctionalization paves the
way for the preparation of diversely functionalized UCs in high
yields and under mild conditions. Moreover, installation of
base-sensitive groups in the lariat arm, previously infeasible due
to the presence of a strong base in the macrocyclization step, is
now unlocked. Studies toward rationally functionalized UCs
tailored to bind salts and chiral anions are currently underway.
(8) Xue, M.; Yang, Y.; Chi, X.; Zhang, Z.; Huang, F. Acc. Chem. Res.
2012, 45 (8), 1294−1308.
(9) (a) Lindoy, L. F.; Park, K.-M.; Lee, S. S. Chem. Soc. Rev. 2013, 42
(4), 1713−1727. (b) Levin, J. I. Macrocycles in Drug Discovery; Royal
Society of Chemistry: 2014; Vol. 40.
(10) (a) For a recent review on macrocycles synthesis, see: Martí-
Centelles, V.; Pandey, M. D.; Burguete, M. I.; Luis, S. V. Chem. Rev.
2015, 115 (16), 8736−8834. (b) Diederich, F.; Stang, P. J.; Tykwinski,
R. R. Modern supramolecular chemistry: strategies for macrocycle
synthesis; John Wiley & Sons: 2008.
(11) (a) Feng, W.; Yamato, K.; Yang, L.; Ferguson, J. S.; Zhong, L.;
Zou, S.; Yuan, L.; Zeng, X. C.; Gong, B. J. Am. Chem. Soc. 2009, 131
(7), 2629−2637. (b) Wu, Z.; Hu, T.; He, L.; Gong, B. Org. Lett. 2012,
14 (10), 2504−2507. (c) Ong, W.; Zeng, H. J. Inclusion Phenom. Mol.
Recognit. Chem. 2013, 76 (1−2), 1−11.
(12) (a) Bolduc, P.; Jacques, A.; Collins, S. K. J. Am. Chem. Soc. 2010,
132 (37), 12790−12791. (b) Gregolinski, J.; Slepokura, K.; Packowski,
T.; Lisowski, J. Org. Lett. 2014, 16 (17), 4372−4375.
(13) (a) Alfonso, I.; Bolte, M.; Bru, M.; Burguete, M. I.; Luis, S. V.;
Rubio, J. J. Am. Chem. Soc. 2008, 130 (19), 6137−6144. (b) Bru, M.;
Alfonso, I.; Bolte, M.; Burguete, M. I.; Luis, S. V. Chem. Commun.
2011, 47 (1), 283−285. (c) Martí-Centelles, V.; Burguete, M. I.; Luis,
S. V. Chem. - Eur. J. 2012, 18 (8), 2409−2422.
(14) Gregolinski, J.; Slepokura, K.; Packowski, T.; Lisowski, J. Org.
Lett. 2014, 16 (17), 4372−4375.
(15) Katayev, E. A.; Pantos, G. D.; Reshetova, M. D.; Khrustalev, V.
N.; Lynch, V. M.; Ustynyuk, Y. A.; Sessler, J. L. Angew. Chem., Int. Ed.
2005, 44 (45), 7386−7390.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
glett.5b02324.
(16) For selected examples, see: (a) Van Loon, J. D.; Arduini, A.;
Coppi, L.; Verboom, W.; Pochini, A.; Ungaro, R.; Harkema, S.;
Reinhoudt, D. N. J. Org. Chem. 1990, 55 (21), 5639−5646.
(b) Fairfull-Smith, K.; Redon, P. M. J.; Haycock, J. W.; Williams, N.
H. Tetrahedron Lett. 2007, 48 (8), 1317−1319. (c) Van Rossom, W.;
Maes, W.; Kishore, L.; Ovaere, M.; Van Meervelt, L.; Dehaen, W. Org.
Lett. 2008, 10 (4), 585−588. (d) Strutt, N. L.; Zhang, H.; Schneebeli,
S. T.; Stoddart, J. F. Acc. Chem. Res. 2014, 47 (8), 2631−2642.
(e) Lavendomme, R.; Leroy, A.; Luhmer, M.; Jabin, I. J. Org. Chem.
2014, 79 (14), 6563−6570. (f) Kubota, N.; Segawa, Y.; Itami, K. J. Am.
Chem. Soc. 2015, 137 (3), 1356−1361.
(17) (a) Gryko, D. T.; Gryko, D.; Jurczak, J. Synlett 1999, 1999 (08),
1310−1312. (b) Szumna, A.; Jurczak, J. Eur. J. Org. Chem. 2001, 2001
(21), 4031−4039. (c) Chmielewski, M. J.; Szumna, A.; Jurczak, J.
Tetrahedron Lett. 2004, 45 (47), 8699−8703.
(18) Dąbrowa, K.; Pawlak, M.; Duszewski, P.; Jurczak, J. Org. Lett.
2012, 14 (24), 6298−6301.
(19) Dąbrowa, K.; Ceborska, M.; Jurczak, J. Cryst. Growth Des. 2014,
14 (10), 4906−4910.
Detailed experimental procedures for the compounds
synthesis and NMR (1H, 13C) spectra, calculation
procedure, and Cartesian coordinates of calculated
structures (PDF)
X-ray crystallographic information for 7c·DMSO and
7d·H2O·DMSO (CIF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We would like to acknowledge Poland’s National Science
Centre (Project 2011/02/A/ST5/00439) for financial support.
The X-ray structures of 7c and 7d were determined in the
Institute of Physical Chemistry by Dr. Magdalena Ceborska and
in the Advanced Crystal Engineering Laboratory (aceLAB) at
the Chemistry Department of the University of Warsaw by Dr.
Łukasz Dobrzycki, respectively.
(20) Note that during purification by column chromatography, host
7b and 7c left the column as pure 1:1 complexes with a TEA
hydrochloride. Free macrocycles were then quantitatively liberated by
the addition of water, subsequent short sonification (∼2 min), and
filtration (see Figures S5−S6). The reverse approach, i.e. extraction of
the host and subsequent column chromatography, resulted in
significantly lower yields of macrocycles (∼60%).
REFERENCES
■
(1) (a) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89 (26), 7017−7036.
(b) Lehn, J.-M. Supramolecular chemistry; VCH: Weinheim, 1995; Vol.
1.
(2) Gokel, G. W. Crown ethers and cryptands; Royal Society of
Chemistry: 1991; Vol. 3.
(3) Del Valle, E. M. Process Biochem. (Oxford, U. K.) 2004, 39 (9),
1033−1046.
(4) Gutsche, C. D. Calixarenes revisited; Royal Society of Chemistry:
1998.
(5) Timmerman, P.; Verboom, W.; Reinhoudt, D. N. Tetrahedron
1996, 52 (8), 2663−2704.
(6) Gale, P. A.; Sessler, J. L.; Kral, V. Chem. Commun. 1998, 1, 1−8.
́
D
DOI: 10.1021/acs.orglett.5b02324
Org. Lett. XXXX, XXX, XXX−XXX