RSC Advances
Paper
and all potentials were referenced to the Cp2Fe+/0 couple at 0 V.
During the electrocatalytic experiments under N2, increments of
glacial HOAc (chromatographic grade, S99.8%, water 0.15%,
by the Karl Fischer method) were added by microsyringe.
R. Pichon and N. Kervarec, Organometallics, 2007, 26, 2042–
2052; (c) L. Mercs, G. Labat, A. Neels, A. Ehlers and
M. Albrecht, Organometallics, 2006, 25, 5648–5656; (d)
J. F. Capon, S. E. Hassnaoui, F. Gloaguen,
P. Schollhammer and J. Talarmin, Organometallics, 2005,
24, 2020–2022.
Catalytic hydroxylation
5 (a) C. M. Thomas, T. Liu, M. B. Hall and M. Y. Darensbourg,
Inorg. Chem., 2008, 47, 7009–7024; (b) J. Wu, W. Dai,
J. H. Farnaby, N. Hazari, J. J. Le Roy, V. Mereacre,
M. Murugesu, A. K. Powell and M. K. Takase, Dalton Trans.,
2013, 42, 7404–7413; (c) X. Wang, Z. Mo, J. Xiao and
L. Deng, Inorg. Chem., 2013, 52, 59–65; (d) M. J. Ingleson
and R. A. Layeld, Chem. Commun., 2012, 48, 3579–3589;
(e) S. Zlatogorsky, C. A. Muryn, F. Tuna, D. J. Evans and
M. J. Ingleson, Organometallics, 2011, 30, 4974–4982.
6 E. S. Donovan, G. S. Nichol and G. A. N. Felton, J. Organomet.
Chem., 2013, 726, 9–13.
Hydroxylation of benzene with H2O2 (30%, w/w, in H2O) was
carried out in a 25 mL round bottom ask equipped with a
reux condenser and a magnetic stirrer. In a typical reaction, IV
(7 mg, 0.01 mmol) was dissolved in CH3CN (2.0 mL). Aer the
mixture was heated to the desired temperature, benzene (0.1
mL, 1.1 mmol) was added to the mixture. Lastly, a certain
amount of H2O2 was added to start the reaction and the mixture
was stirred for several hours. All the experiments were con-
ducted at ambient pressure. Measurements of GC (9890B)
equipped with a FID detector and a capillary column (OV-1701;
30 m ꢂ 0.25 mm ꢂ 0.25 mm) were performed to analyze the
product mixture. The internal standard method was used for
quantitative analysis and chlorobenzene was chosen as the
internal standard substance. TPD analysis was carried out, from
80 ꢀC to 200 ꢀC at a ramp of 10 ꢀC, then from 200 ꢀC to 280 ꢀC at
7 X. Wang, T. Y. Zhang, Q. S. Yang, S. Jiang and B. Li, Eur. J.
Inorg. Chem., 2015, 817–825.
8 J. Louie and R. H. Grubbs, Chem. Commun., 2000, 1479–1480.
9 (a) A. Volkov, E. Buitrago and H. Adolfsson, Eur. J. Org.
¨
Chem., 2013, 11, 2066–2070; (b) S. Demir, Y. Gokçe,
ꢀ
a ramp of 30 C. This reaction system appeared to have a high
selectivity since phenol was the only product detected by GC.
¨
˙
˘
N. Kaloglu, J. B. Sortais, C. Darcel and I. Ozdemir, Appl.
Organomet. Chem., 2013, 27, 459–464; (c) T. Hashimoto,
S. Urban, R. Hoshino, Y. Ohki, K. Tatsumi and F. Glorius,
´
Organometallics, 2012, 31, 4474–4479; (d) D. Bezier,
Acknowledgements
G. T. Venkanna, J. B. Sortais and C. Darcel, ChemCatChem,
2011, 3, 1747–1750.
We are grateful to the National Natural Science Foundation of
China (21103121 and 21276187), the Research Fund for the
Doctoral Program of Higher Education of China
(20110032120011) and the Tianjin Municipal Natural Science
Foundation (13JCQNJC05800) for nancial support of this work.
10 (a) C. Pranckevicius and D. W. Stephan, Organometallics,
2013, 32, 2693–2697; (b) T. Hatakeyama, S. Hashimoto,
K. Ishizuka and M. Nakamura, J. Am. Chem. Soc., 2009,
131, 11949–11963; (c) T. Yamagami, R. Shintani,
E. Shirakawa and T. Hayashi, Org. Lett., 2007, 9, 1045–1048.
11 (a) C. M. Guisan, F. Tato, E. Bunuel, P. Calle and
D. J. Cardenas, Chem. Sci., 2013, 4, 1098–1104; (b)
J. A. Przyojski, H. D. Arman and Z. J. Tonzetich,
Organometallics, 2012, 31, 3264–3271; (c) L. Xiang, J. Xiao
and L. Deng, Organometallics, 2011, 30, 2018–2025.
References
1 (a) Z. Xiao, Z. Wei, L. Long, Y. Wang, D. J. Evans and X. Liu,
Dalton Trans., 2011, 40, 4291–4299; (b) P. Li, M. Wang, C. He,
˚
G. Li, X. Liu, C. Chen, B. Akermark and L. Sun, Eur. J. Inorg.
Chem., 2005, 2506–2513; (c) B.-E. Jugder, J. Welch, 12 (a) Y. S. Wang, H. M. Sun, X. P. Tao, Q. Shen and Y. Zhang,
K.-F. Aguey-Zinsou and C. P. Marquis, RSC Adv., 2013, 3,
8142–8159.
2 (a) E. J. Lyon, I. P. Georgakaki, J. H. Reibenspies and
Chin. Sci. Bull., 2007, 52, 3193–3199; (b) M. Z. Chen,
H. M. Sun, W. F. Li, Z. G. Wang, Q. Shen and Y. Zhang, J.
Organomet. Chem., 2006, 691, 2489–2494.
M. Y. Darensbourg, Angew. Chem., Int. Ed., 1999, 38, 3178– 13 (a) X. Li, M. Wang, D. Zheng, K. Han, J. Dong and L. C. Sun,
3180; (b) A. L. Cloirec, S. P. Best, S. Borg, S. C. Davies,
D. J. Evans, D. L. Hughesa and C. J. Pickett, Chem.
Commun., 1999, 2285–2286.
3 (a) R. Lopes, J. M. S. Cardoso, L. Postigo and B. Royo, Catal.
Lett., 2013, 143, 1061–1066; (b) C. Tard and C. J. Pickett,
Energy Environ. Sci., 2012, 5, 8220–8224; (b) F. Wang,
W. G. Wang, X. J. Wang, H. Y. Wang, C. H. Tung and
L. Z. Wu, Angew. Chem., Int. Ed., 2011, 50, 3193–3197; (c)
M. L. Singleton, J. H. Reibenspies and M. Y. Darensbourg,
J. Am. Chem. Soc., 2010, 132, 8870–8871.
Chem. Rev., 2009, 109, 2245–2274; (c) C. Cao, Y. Zhuang, 14 (a) S. Zhu, R. Liang, L. Chen, C. Wang, Y. Ren and H. Jiang,
J. Zhao, H. Liu, P. Geng, G. Pang and Y. Shi, Synth.
Commun., 2012, 42, 380–387; (d) M. Lee, Z. Niu,
Tetrahedron Lett., 2012, 53, 815–818; (b) T. Schaub, M. Backes
and U. Radius, Organometallics, 2006, 25, 4196–4206.
D. V. Schoonover, C. Slebodnick and H. W. Gibson, 15 L. C. Song, C. G. Li, J. H. Ge, Z. Y. Yang, H. T. Wang, J. Zhang
Tetrahedron, 2010, 66, 7077–7082. and Q. M. Hu, J. Inorg. Biochem., 2008, 102, 1973–1979.
4 (a) F. Godoy, C. Segarra, M. Poyatos and E. Peris, 16 L. C. Song, X. Luo, Y. Z. Wang, B. Gai and Q. M. Hu, J.
Organometallics, 2011, 30, 684–688; (b) D. Morvan, Organomet. Chem., 2009, 694, 103–112.
J. F. Capon, F. Gloaguen, G. A. Le, M. Marchivie, 17 J. D. Lawrence, T. B. Rauchfuss and S. R. Wilson, Inorg.
F. Michaud, P. Schollhammer, J. Talarmin, J. J. Yaouanc,
Chem., 2002, 41, 6193–6195.
29030 | RSC Adv., 2015, 5, 29022–29031
This journal is © The Royal Society of Chemistry 2015