Organic & Biomolecular Chemistry
Communication
Notes and references
1
2
A. Baeyer, Ber. Dtsch. Chem. Ges., 1871, 4, 555–558.
Y. Urano, M. Kamiya, K. Kanda, T. Ueno, K. Hirose and
T. Nagano, J. Am. Chem. Soc., 2005, 127, 4888–4894.
3
4
5
6
7
8
A. H. Coons, H. J. Creech and R. N. Jones, Exp. Biol. Med.,
1941, 47, 200–202.
J. D. Marshall, W. C. Eveland and C. W. Smith, Proc. Soc.
Exp. Biol. Med., 1958, 98, 898–900.
J. L. Riggs, R. J. Seiwald, J. H. Burckhalter, C. M. Downs
and T. G. Metcalf, Am. J. Pathol., 1958, 34, 1081–1097.
G. T. Hermanson, Bioconjugate Techniques, 3rd edn, 2013,
vol. 10, pp. 395–463.
Fig. 5 Fluorescence microscopy images of live HeLa cells stained with
SITC-actin (a) and SiR-Actin (b). Cells were incubated in medium con-
taining 1 µM dye for one hour, with cells washed prior to imaging. Scale
bar is 10 µm.
M. Huang, Z. Ma, E. Khor and L. Y. Lim, Pharm. Res., 2002,
19, 1488–1494.
A. Imhof, M. Megens, J. J. Engelberts, D. T. N. de Lang,
R. Sprik and W. L. Vos, J. Phys. Chem. B, 1999, 103, 1408–
1415.
SITC-Actin was indeed found to be cell permeable, but live
cell imaging needed slight adjustments of conditions in com-
2
6
parison to SiR-Actin. Then bright and well resolved images
were obtained with results similar to SiR-Actin (Fig. 5). The
observed differences clearly result from different photophysical
9 M. Jullian, A. Hernandez, A. Maurras, K. Puget,
M. Amblard, J. Martinez and G. Subra, Tetrahedron Lett.,
2009, 50, 260–263.
and physicochemical properties and (un)binding kinetics. In 10 T. C. Pappas, B. Gametchu and C. S. Watson, FASEB J.,
particular, in being absolutely neutral to F-actin polymeriz-
1995, 9, 404–410.
ation rate, SITC-Actin may be beneficially exploited for undis- 11 Z. Qi, I. Whitt, A. Mehta, J. Jin, M. Zhao, R. C. Harris,
torted F-actin monitoring in cell biology.
A. B. Fogo and M. D. Breyer, Am. J. Physiol.: Renal, Fluid
Electrolyte Physiol., 2004, 286, F590–F596.
1
1
2 S. Santra, H. Yang, D. Dutta, J. T. Stanley, P. H. Holloway,
W. Tan, B. M. Moudgil and R. A. Mericle, Chem. Commun.,
Conclusions
2004, 2810–2811.
The new fluorescent labelling tool SITC is complementary to
FITC, and shows balanced spectral properties as well as
reasonable stability and good reactivity in organic solvents. En
route, the newly developed synthesis allows gram-scale syn-
thesis of the SiR and SITC fluorophores. In extending earlier
3 L. Ma, T. Dichwalkar, J. Y. H. Chang, B. Cossette,
D. Garafola, A. Q. Zhang, M. Fichter, C. Wang, S. Liang,
M. Silva, S. Kumari, N. K. Mehta, W. Abraham, N. Thai,
N. Li, K. D. Wittrup and D. J. Irvine, Science, 2019, 365,
1
62–168.
4 C. Song, J. Liu, J. Li and Q. Liu, Biosens. Bioelectron., 2016,
5, 734–739.
5 W.-L. Liu, S.-H. Lo, B. Singco, C.-C. Yang, H.-Y. Huang and
C.-H. Lin, J. Mater. Chem. B, 2013, 1, 928–932.
6 D. H. Ma, D. Kim, T. Akisawa, K. H. Lee, K. T. Kim and
K. H. Ahn, Chem. – Asian J., 2015, 10, 894–902.
7 L. Wang, M. S. Frei, A. Salim and K. Johnsson, J. Am. Chem.
Soc., 2019, 141, 2770–2781.
3
7
reports, we found that the triflate derived from phenol 10 is
suitable for derivatisation and late stage diversification.
1
1
1
1
1
8
SITC can be used with readily available Cy5-compatible
filters. It is an excellent label for fluorescence microscopy in
living and fixed cells, as exemplified by high resolution imaging
of F-Actin with SITC-Actin. SITC should hence become very
useful for labelling of molecules, surfaces, and particles, or as a
fluorophore partner in FRET applications. The unexpectedly
high stability and attenuated reactivity of the SITC reagent in
water (see ESI†) offers considerable potential for site-selective
labelling reactions. Studies along this line are underway.
8 Y. Koide, Y. Urano, K. Hanaoka, T. Terai and T. Nagano,
ACS Chem. Biol., 2011, 6, 600–608.
1
2
9 L. D. Lavis, Annu. Rev. Biochem., 2017, 86, 825–843.
0 L. D. Lavis and R. T. Raines, ACS Chem. Biol., 2014, 9, 855–
8
66.
Conflicts of interest
2
2
1 E. A. Specht, E. Braselmann and A. E. Palmer, Annu. Rev.
Plant Physiol., 2017, 79, 93–117.
2 S. N. Uno, M. Kamiya, T. Yoshihara, K. Sugawara, K. Okabe,
M. C. Tarhan, H. Fujita, T. Funatsu, Y. Okada, S. Tobita
and Y. Urano, Nat. Chem., 2014, 6, 681–689.
There are no conflicts to declare.
Acknowledgements
2
3 K. Umezawa, M. Yoshida, M. Kamiya, T. Yamasoba and
Support by the DAAD (doctoral fellowship to V. N.) is gratefully
Y. Urano, Nat. Chem., 2017, 9, 279–286.
acknowledged. Ms Jana Hamann (FLI Jena) is thanked for 24 G. Lukinavicius, K. Umezawa, N. Olivier, A. Honigmann,
support in cell biology experimentation.
G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Correa Jr.,
This journal is © The Royal Society of Chemistry 2021
Org. Biomol. Chem., 2021, 19, 574–578 | 577