T. Hirai et al. / Tetrahedron Letters 46 (2005) 117–119
119
Table 2. Examples of Pt-catalyzed pyridylthiolation of 2 with 9a and
10ca
2. The reaction using the aliphatic alkynes 2b and 2c
gave the pyridylthiolation products 3e and 3f in modest
yields (entries 1 and 2). The ratios of 3 and 5 were signifi-
cantly dependent on the nature of alkynes. Although
predominant amounts of 3-pyridyl-SPh (5a) were pro-
duced when phenylacetylene (2d) and its derivative (2e)
were used, highly conjugated pyridine derivatives 3g
and 3h were synthesized by simple procedures, respec-
tively (entries 3 and 4). The reaction of 5-hexynenitrile
(2f) gave the corresponding adduct 3i in 34% yield
together with many by-products (entry 5). The protec-
tion of hydroxyl group hardly influenced the result of
the reaction (entries 6 and 7). Neither internal alkyne
(2i) nor propargyl bromide (2j) was active for the
present transformation (entries 8 and 9).
R
N
cat. Pt(PPh3)4
N
SPh
+
+
+
R
PhSK
SPh
N
I
3
5a
9a
10c
2
Entry
1
2
Yield (%)
of 3b
Yield (%)
of 5ab
C8H17-n
3e
77
16
16
2b
2c
2
3f
72
23
3c
4
3g
56
53
Ph
In conclusion, this paper provides a convenient method
for the synthesis of pyridine derivatives with 3-vinyl
functionality. Further study is now continued to unveil
the versatility of Pt-catalyzed carbothiolation chemistry.
2d
2e
2f
C6H4-p-OMe
3h
44
34
50
50
5d
6e
7
3i
27
(CH2)3CN
(CH2)4OH
OTHP
3j
22
References and notes
2g
3k
3l
21
1. (a) Ogawa, A. In Main Group Metals in Organic Synthesis;
Yamamoto, H., Oshima, K., Eds.; Wiley-VCH: Weinheim,
2004; pp 813–866; (b) El Ali, B.; Alper, H. In Handbook of
Organopalladium Chemistry for Organic Synthesis; Negishi,
E., Wiley, J., Eds.; Wiley-Interscience: New York, 2002;
Chapter VI. 2.1.1.2; (c) Ogawa, A. In Handbook of
Organopalladium Chemistry for Organic Synthesis; Negishi,
E., Wiley, J., Eds.; Wiley-Interscience: New York, 2002,
Chapter VII. 6; (d) Kuniyasu, H. In Catalytic Heterofunc-
2h
H7C3
2i
C3H7
8
ND
ND
8
CH2Br
9
3m
ND
2j
a Compounds 9a (1.0mmol), 10c (1.1mmol), 2 (1.2mmol), Pt(PPh3)4
(0.05mmol), and toluene (0.5mL) under reflux for 24h.
b Isolated yield.
c 30h.
tionalization; Togni, A., Grutzmacher, H., Eds.; Wiley-
¨
d Compounds 10c (1.5mmol), 2a (1.5mmol), and Pt(PPh3)4
(0.10mmol).
VCH: Weinheim, 2001; pp 217–251; (e) Kondo, T.;
Mitsudo, T. Chem. Rev. 2000, 100, 3205; (f) Ogawa, A. J.
Organomet. Chem. 2000, 611, 463; (g) Han, L.-B.; Tanaka,
M. Chem. Commun. 1999, 395; (h) Beletskaya, I.; Moberg,
C. Chem. Rev. 1999, 99, 3435.
e Pt(PPh3)4 (0.10mmol).
pyridyl-SPh (5a) (14%) with the recovery of 3-pyridyl-I
(9a) (77%), while no reaction proceeded when the solu-
tion of 3-pyridyl-I (9a) and PhSK (10c) was just refluxed
without catalyst, proving that Pt-complex also catalyzed
the production of 3-pyridyl-SPh (5a). The reactions
using p-BrC6H4SK (10e) and p-MeOC6H4SK (10f) also
afforded the desired pyridylthiolation products 3c and
3d in moderate yields (entries 7 and 8). However, due
to the high susceptibility of 2-iodopyridine (9d) to nucleo-
philic substitution by PhSK (10c) even in the absence
of catalyst (entry 10), the yield of 3b was not improved
by this combination of reagents (entry 9). When the
reaction of 1-octyne (2a) with 3-pyridyl-I (9a) and PhSK
(10c) was conducted in the presence of Pd(PPh3)4 in-
stead of Pt(PPh3)4, a mixture of 3a (5%), 3-pyridyl-
SPh (5a) (40%) and (Z,Z)-(3-pyridyl)(n-C6H13)C@
CHCH@C(n-C6H13)(SPh) (12a) (2%) was produced.
Both Pt(norbornene)3 and Pt(norbornene)3/P(n-Bu)3
were ineffective as catalysts for the formation of 3a.
2. (a) Kuniyasu, H.; Sugoh, K.; Moon, S.; Kurosawa, H. J.
Am. Chem. Soc. 1997, 119, 4669; (b) Kuniyasu, H.;
Maruyama, A.; Kurosawa, H. Organometallics 1998, 17,
908; (c) Kuniyasu, H.; Hiraike, H.; Morita, M.; Tanaka, A.;
Sugoh, K.; Kurosawa, H. J. Org. Chem. 1999, 64, 7305; (d)
Ohtaka, A.; Kuniyasu, H.; Kinomoto, M.; Kurosawa, H. J.
Am. Chem. Soc. 2002, 124, 14324.
3. (a) Kuniyasu, H.; Kurosawa, H. Chem. Eur. J. 2002, 8,
2660; (b) Sugoh, K.; Kuniyasu, H.; Sugae, T.; Ohtaka, A.;
Takai, Y.; Tanaka, A.; Machino, C.; Kambe, N.; Kuro-
sawa, H. J. Am. Chem. Soc. 2001, 123, 5108; (c) Hirai, T.;
Kuniyasu, H.; Kato, T.; Kurata, Y.; Kambe, N. Org. Lett.
2003, 5, 3871; (d) Hirai, T.; Kuniyasu, H.; Kambe, N.
Chem. Lett. 2004, 33, 1148.
4. Sugoh, K.; Kuniyasu, H.; Kurosawa, H. Chem. Lett. 2002,
31, 106.
5. It has already reported that the oxidative addition of 3-
bromopyridine to Pd(PPh3)4 gave Pd(3-pyridyl)Br(PPh3)2.
Isobe, K.; Nakamura, Y.; Miwa, T.; Kawaguchi, S. Bull.
Chem. Soc. Jpn. 1987, 60, 149–157.
6. For the synthetic utility of vinyl sulfides, see: (a) Trost, B.
M. A.; Lavoie, C. J. Am. Chem. Soc. 1983, 105, 5075; (b)
Magnus, P.; Quagliato, D. J. Org. Chem. 1985, 50,
1621.
The scope and limitations of the present Pt-catalyzed
pyridylthiolation of alkynes were summarized in Table