P. W. C. Cross et al. / Tetrahedron 59 (2003) 3349–3358
3357
(28 mg, 40 mmol) gave [2,6-2H1.9]-N,N-dimethylbenzamide
(2 mg), dH (500 MHz, 708C, CD3SOCD3) 2.94 (6H, s),
7.36–7.39 (2H, m), 7.40–7.43 (1.1H, m); m/z 152, 151, 150,
149 (Mþz/[M2H]þ), 107, 106 (PhCOþ; average fragment
mass 106.99, vs 105.08 for unlabelled material).
deuterochloroform (0.5 ml) containing bis(1,5-cycloocta-
diene)diiridium(I) dichloride (6.5 mg, 10 mmol) and tri-
phenylphosphine (5.3 mg, 20 mmol) was stirred for
20 min, then filtered through Celite. The filter cake was
washed through with a little additional deuterochloro-
form, and the yellow filtrate was transferred to an NMR
tube. dH (CDCl3) 1.9–2.0 (4H, m), 2.2–2.6 (4H, m), 4.19
(4H, br s), 7.3–7.75 (15H, m); dP (CDCl3) 18.55, 20.51 (ca.
9:1).
Exchange of benzenesulfonamide (12 mg, 76 mmol) in the
presence of 1a (40 mmol) gave [2,6-2H1.7]-benzenesulfona-
mide (8 mg). dH (500 MHz, 708C, CD3SOCD3) 7.28–7.34
(3H, m, H4/NH2), 7.53–7.60 (2H, m, H3/5), 7.82 (0.3H, br
d, J¼8.0 Hz, H2/6); m/z 157 (Mþz), 77 (C6H5þ).
This general technique, with appropriate changes in ligand
stoichiometry, was also used to prepare: Ir(cod)(MePPh2)þ.
BF24 (3c) as a yellow solution. dH (CDCl3) 1.70 (1H, d,
J¼6.2 Hz, P–CH3), 1.8–2.5 (8H, m), 2.00 (0.5H, d, J¼
6.2 Hz, P–CH3), 2.06 (1H, d, J¼12.5 Hz, P–CH3), 2.37
(0.5H, d, J¼12.5 Hz, P–CH3), 3.46 (2H, br s), 4.23 (2H, br
s), 7.15–7.75 (10H, m); dP (CDCl3) 3.07, 37.37, 51.93 (ca.
8:1:1).
Exchange of methyl phenyl sulfoxide (6 mg, 43 mmol) in
the presence of 1a (20 mmol) gave [2,6-2H1.8]-methyl
phenyl sulfoxide. dH (500 MHz, 708C, CD3SOCD3) 3.70
(3H, s), 7.45–7.53 (3H, m), 7.63 (0.2H, br d, J¼7.3 Hz); m/z
142, 141 (Mþz), 127, 126 ([M2CH3]þ).
Exchange of acetophenone O-methyl oxime (12 mg,
80 mmol) in the presence of 1b, (40 mmol) gave
[2,6-2H1.7]-acetophenone O-methyl oxime (10 mg). dH
(270 MHz, CDCl3) 2.25 (3H, s), 4.01 (3H, s), 7.35–7.40
(3H, m, H3/4/5), 7.60–7.70 (0.3H, m, H2/6); m/z 151, 150
(Mþz).
Ir(cod)(PPh3)2þ.BF42 (1b) as a ruby red solution.8,9 dH
(CDCl3) 1.55–2.12 (4H, m), 2.30–2.54 (4H, m), 4.19 (4H,
br s), 7.25–7.70 (30H, m); dP (CDCl3) 18.58.
Ir(cod)(MePPh2)2þ.BF42 (1c) as a ruby red solution.9,10 dH
(CDCl3) 1.70 (6H, d, J¼6.2 Hz, P–CH3), 1.95–2.05 (4H,
m), 2.25–2.35 (4H, m), 4.21 (4H, br s), 7.30–7.60 (20H,
m); dP (CDCl3) 3.05.
Exchange of 2-phenylpyridine (3.1 mg, 20 mmol) in the
presence of 2b (isolated complex; 9.1 mg, 10 mmol)
gave [2,6-2H1.8]-2-phenylpyridine (3 mg). dH (500 MHz,
CD3SOCD3) 7.34 (1H, ddd, J¼7.4, 4.9, 1.2 Hz, H5), 7.42
(1H, m, H40), 7.46–7.50 (2H, m, H30/50), 7.86 (1H, ddd, J¼
8.0, 7.4, 1.8 Hz, H4), 7.94 (1H, d0dd, J¼8.0, 1.2, 1.1 Hz,
H3), 8.07 (0.2H, d, J¼8.0 Hz, H20/6 ), 8.66 (1H, ddd, J¼4.9,
1.8, 0.9 Hz, H6); m/z(EI) 157, 156 (Mþz), 129, 128
([M2HCN]þ).
Ir(cod)[P(C6F5)3]2þ.BF42 (1d) as a ruby red solution. dH
(CDCl3) 1.86 (4H, m), 2.34 (4H, m), 3.48 (1H, m), 3.74 (1H,
m), 4.03 (1H, br s), 5.24 (1H, m).
Ir(cod)(P-2-furyl3)2þ.BF42 (1e) as a ruby red solution. dH
(CDCl3) 1.56–1.67 (4H, m), 2.28–2.37 (4H, m), 4.81 (4H,
br s), 6.47–6.49 (6H, m), 6.69–6.71 (6H, m), 7.59 (6H, br
s).
Exchange of 1-phenylpyrazole (5.6 mg, 40 mmol) in the
presence of 1d (20 mmol) gave [2,6-2H1.5]-1-phenylpyra-
zole (4 mg). dH (500 MHz, CD3SOCD3) 6.53 (1H, dd,
J¼2.3, 2.0 Hz, H4), 7.29 (1H, m, H40), 7.46–7.51 (2H, m,
H30/50), 7.73 (1H, dd, J¼2.0, 0.6 Hz, H5), 7.83 (0.5H, br d,
J¼8.6 Hz, H20/60), 8.47 (1H, dd, J¼2.3, 0.6 Hz, H3); m/z
146, 145, 144 (Mþz), 118, 117, 116 ([M2HCN]þ).
Ir(cod)[P(c-C6H11)3]2þ.BF42 (1f) as a ruby red solution. dH
(CDCl3) 1.10–2.05 (66H, m), 2.10–2.30 (4H, m), 4.24 (2H,
br s), 4.80–4.85 (2H, m).
Ir(cod)(AsPh3)2þ.BF42 (1h) as a ruby red solution.11 dH
(CDCl3) 1.50–1.90 (4H, m), 2.15–2.45 (4H, m), 3.55 (2H,
br s), 4.36 (2H, br s), 7.25–7.35 (12H, m), 7.35–7.50 (18H,
m).
Exchange of 5-acetyl-3-phenylisoxazole (3.7 mg, 20 mmol)
in the presence of 1c (10 mmol) gave [2,6-2H1.8]-5-acetyl-3-
phenylisoxazole, m/z 189, 188, 187 (Mþz), 146, 145, 144
([M2CH3CO]þ; average fragment mass 94.98, vs 144.16
for unlabelled material).
Ir(cod)(P-t-Bu3)2þ.BF42 (1k) as a ruby red solution. dH
(CDCl3) 1.46 (54H, s), 1.60–1.64 (4H, m), 2.20–2.30 (4H,
m), 4.25 (4H, br s).
Exchange of 4-phenylthiazole (3.2 mg, 20 mmol) in the
presence of 1b (10 mmol) gave [2,6-2H1.7]-4-phenylthia-
zole, m/z 163, 162 (Mþz; average molecular ion mass
162.87, vs. 161.19 for unlabelled material), 136, 135
(average fragment ion mass 135.85, vs 134.17 for unlabelled
material).
Ir(cod)(PPh3)þ3 .BF42 (2b) as a ruby red solution. dH (CDCl3)
1.90–1.95 (4H, m), 2.3–2.4 (4H, m), 4.03 (2H, br s), 4.19
(2H, br s), 7.25–7.70 (45H, m); dP (CDCl3) 18.56.
Ir(cod)(MePPh2)þ3 .BF42 (2c) as a ruby red solution. dH
(CDCl3) 1.71 (3H, d, J¼6.2 Hz), 1.60–2.50 (14H, m), 4.22
(4H, br s), 7.20–7.60 (30H, m); dP (CDCl3) 3.04.
Exchange of acetanilide (2.7 mg, 20 mmol) in the presence
of 3c (10 mmol) gave [2,6-2H2]-acetanilide, m/z 137 (Mþz),
95 (PhNHþ2 z; average fragment ion mass 94.98, vs 92.99 for
unlabelled material).
Acknowledgements
4.1.2. NMR experiment. Preparation of Ir(cod)(PPh3)1.
BF24 (3b). A suspension of silver tetrafluoroborate (5 mg) in
The authors wish to thank Dr S. J. Byard for NMR spectra.