Page 5 of 7
Journal of the American Chemical Society
catalyzed enantioselective alkynylation of unbiased methylene
scholarship support during his Ph.D. studies. This research used
computational resources provided by the Academic Center for
Computing and Media Studies, Kyoto University. We thank
FUJIFILM Wako Pure Chemical Corporation for providing Sili-
ca-SMAP used in the preparation of racemic products.
C(sp3)–H bonds using 3,3’-fluorinated-BINOL as a chiral ligand. J.
Am. Chem. Soc. 2019, 141, 4558–4563.
1
2
3
4
5
6
7
8
(7) (a) Kawamorita, S.; Murakami, R.; Iwai, T.; Sawamura, M. Syn-
thesis of primary and secondary alkylboronates through site-selective
C(sp3)–H activation with silica-supported monophosphine–Ir catalysts.
J. Am. Chem. Soc. 2013, 135, 2947–2950. (b) Murakami, R.; Tsunoda,
K.; Iwai, T.; Sawamura, M. Stereoselective C–H borylations of cy-
clopropanes and cyclobutanes with silica-supported monophosphane-
Ir catalysts. Chem. Eur. J. 2014, 20, 13127–13131. (c) Murakami, R.;
Iwai, T.; Sawamura, M. Site-selective and stereoselective C(sp3)–H
borylation of alkyl side chains of 1,3-azoles with a silica-supported
monophosphine-Iridium catalyst. Synlett 2016, 27, 1187–1192.
(8) Reyes, R. L.; Harada, T.; Taniguchi, T.; Monde, K.; Iwai, T.;
Sawamura, M. Enantioselective Rh- or Ir-catalyzed directed C(sp3)–H
borylation with phosphoramidite chiral ligands. Chem. Lett. 2017, 46,
1747–1750.
REFERENCES
(1) Reviews on enantioselective C–H functionalization: (a) Saint-
Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q. Enantiose-
lective C(sp3)–H bond activation by chiral transition metal catalysts.
Science 2018, 359, eaao4798. (b) Newton, C. G.; Wang, S.-G.;
Oliveira, C. C.; Cramer, N. Catalytic enantioselective transformations
involving C–H bond cleavage by transition-metal complexes. Chem.
Rev. 2017, 117, 8908–8976. (c) Lu, Q.; Glorius, F. Radical enantiose-
lective C(sp3)–H functionalization. Angew. Chem. Int. Ed. 2017, 56,
49–51.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(2) Selected examples of stereochemistry-generating C(sp3)–H func-
tionalization that caused desymmetrization of symmetrical molecules
through differentiation of enantiotopic carbons: (a) He, J.; Shao, Q.;
Wu, Q.; Yu, J.-Q. Pd(II)-catalyzed enantioselective C(sp3)–H boryla-
tion. J. Am. Chem. Soc. 2017, 139, 3344–3347. (b) Fu, J.; Ren, Z.;
Basca, J.; Musaev, D. G.; Davis, H. M. L. Desymmetrization of cy-
clohexanes by site- and stereoselective C–H functionalization. Nature
2018, 564, 395–399. (c) Milan, M.; Bietti, M.; Costas, M. Highly
enantioselective oxidation of nonactivated aliphatic C–H bonds with
hydrogen peroxide catalyzed by manganese complexes. ACS Cent. Sci.
2017, 3, 196–204. (d) Wasa, M.; Engle, K. M.; Lin, D. W.; Yoo, E. J.;
Yu, J.-Q. Pd(II)-catalyzed enantioselective C–H activation of
cyclopropanes. J. Am. Chem. Soc. 2011, 133, 19598−19601. (e) Xiao,
K.-J.; Lin, D. W.; Miura, M.; Zhu, R.-Y.; Gong, W.; Wasa, M.; Yu,
J.-Q. Palladium(II)-catalyzed enantioselective C(sp3)−H activation
using a chiral hydroxamic acid ligand. J. Am. Chem. Soc. 2014, 136,
8138−8142.
(3) (a) Pan, S.; Endo, K.; Shibata, T. Ir(I)-catalyzed enantioselective
secondary sp3 C–H bond activation of 2-(alkylamino)pyridines with
alkenes. Org. Lett. 2011, 13, 4692–4695. (b) Pan, S.; Matsuo, Y.;
Endo, K.; Shibata, T. Cationic iridium-catalyzed enantioselective
activation of secondary sp3 C–H bond adjacent to nitrogen atom.
Tetrahedron 2012, 68, 9009–9015. (c) Tahara, Y.-K.; Michino, M.;
Ito, M.; Kanyiva, K. S.; Shibata, T. Enantioselective sp3 C–H alkyla-
tion of γ-butyrolactam by a chiral Ir(I) catalyst for the synthesis of 4-
substituted γ-amino acids. Chem. Comm. 2015, 51, 16660–16663.
(4) (a) Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Function-
alization of C(sp3)–H bonds using a transient directing group. Science
2016, 351, 252–256. (b) Wang, H.; Tong, H.-R.; He, G.; Chen, G. An
enantioselective bidentate auxiliary directed Palladium-catalyzed
benzylic C−H arylation of amines using a BINOL phosphate ligand.
Angew. Chem. Int. Ed. 2016, 55, 15387–15391. (c) Murakami, R.;
Sano, K.; Iwai, T.; Taniguchi, T.; Monde, K.; Sawamura, M. Palladi-
um-catalyzed asymmetric C(sp3)–H allylation of 2-alkylpyridines.
Angew. Chem. Int. Ed. 2018, 57, 9465–9469.
(5) (a) Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M.
L. Site-selective and stereoselective functionalization of unactivated
C–H bonds. Nature 2016, 533, 230–234. (b) Liao, K.;ꢀ Yang, Y.-F.; Li,
Y.; Sanders, J. N.; Houk, K. N.; Musaev, D. G.; Davies, H. M. L.
Design of catalysts for site-selective and enantioselective
functionalization of nonactivated primary C–H bonds. Nat. Chem.
2018, 10, 1048–1055.
(6) (a) Chen, G.; Gong, W.; Zhuang, Z.; Andrä, M. S.; Chen, Y.-Q.;
Hong, X.; Yang, Y. F.; Liu, T.; Houk, K. N.; Yu, J.-Q. Ligand-
accelerated enantioselective methylene C(sp3)–H bond activation.
Science 2016, 353, 1023–1027. (b) Yan, S.-B.; Zhang, S.; Duan, W.-L.
Palladium-catalyzed asymmetric arylation of C(sp3)–H bonds of ali-
phatic Amides: Controlling enantioselectivity using chiral phosphoric
amides/amines. Org. Lett. 2015, 17, 2458–2461. (c) Yan, S.-Y.; Han,
Y.-Q.; Yao, Q.-J.; Nie, X.-L.; Liu, L.; Shi, B.-F. Palladium(II)-
catalyzed enantioselective arylation of unbiased methylene C(sp3)–H
bonds enabled by a 1-pyridynylisopropyl auxiliary and chiral phos-
phoric acids. Angew. Chem. Int. Ed. 2018, 57, 9093–9097. (d) Han,
Y.-Q.; Ding, Y.; Zhou, T.; Yan, S.-Y.; Song, H.; Shi, B.-F. Pd(II)-
(9) Zou, X.; Zhao, H.; Li, Y.; Gao, Q.; Ke, Z.; Xu, S. Chiral bidentate
boryl ligand enabled iridium-catalyzed asymmetric C(sp2)–H boryla-
tion of diarylmethylamines. J. Am. Chem. Soc. 2019, 141, 5334–5342.
(10) (a) Gavrilov, K. N.; Lyubimov, S. E.; Petrovskii, P. V.; Zheglov,
S. V.; Safronov, A. S.; Skazov, R. S.; Davankov, V. A. Facile one-pot
synthesis of BINOL- and H8-BINOL-based aryl phosphites and their
use in palladium catalyzed asymmetric allylation. Tetrahedron 2005,
61, 10514–10520. (b) Gavrilov, K. N.; Zheglov, S. V.; Gavrilova, M.
N.; Novikov, I. M.; Maksimova, M. G.; Groshkin, N. N.; Rastorguev,
E. A.; Davankov, V. A. Phosphites and diamidophosphites based on
mono-ethers of BINOL: a comparison of enantioselectivity in asym-
metric catalytic reactions. Tetrahedron 2012, 68, 1581–1589. (c)
Gavrilov, K. N.; Lyubimov, S. E.; Zheglov, S. V.; Benetsky, E. B.;
Petrovskii, P. V.; Rastorguev, E. A.; Grishina, T. B.; Davankov, V. A.
MOP-type binaphthyl phosphite and diamidophosphite ligands and
their application in catalytic asymmetric transformations. Adv. Synth.
Catal. 2007, 349, 1085–1094.
(11) The use of one equivalent of the substrate 1a in the presence of
2,6-lutidine (100 mol%) similarly gave the product at 73% (1H NMR)
and 98% ee. However, the use of stoichiometric amount of 2,6-
lutidine led to difficulty in product purification.
(12) See Supporting Information for details of effects of the additive
and the use of the excess substrate.
(13) Rendler, S.; Plefka, O.; Karatas, B.; Auer, G.; Fröhlich, R.;
Müch-Lichtenfeld, C.; Grimme, S.; Oestreich, M. Stereoselective
alcohol silylation by dehydrogenative Si–O coupling: scope, limita-
tions, and mechanism of the Cu-H-catalyzed non-enzymatic kinetic
resolution with silicon-stereogenic silanes. Chem. Eur. J. 2008, 14,
11512–11528.
(14) In previous theoretical studies, the C–H activation step was
shown to be the rate-determining step. See (a) Tamura, H.; Yamazaki,
H.; Sato, H.; Sakaki, S. Iridium-catalyzed borylation of benzene with
diboron. Theoretical elucidation of catalytic cycle including unusual
iridium(V) intermediate. J. Am. Chem. Soc. 2003, 125, 16114–16126.
(b) Huang, G.; Kalek, M.; Liao, R.-Z.; Himo, F. Mechanism, reactivi-
ty, and relectivity of the iridium-catalyzed C(sp3)–H borylation of
chlorosilanes. Chem. Sci. 2015, 6, 1735–1746. (c) Haines, B. E.; Saito,
Y.; Segawa, Y.; Itami, K.; Musaev, D. G. Flexible reaction pocket on
bulky diphosphine−Ir complex controls regioselectivity in para-
selective C−H borylation of arenes. ACS Catal. 2016, 6, 7536−7546.
See also ref. 9.
(15) Maeda, S.; Harabuchi, Y.; Takagi, M.; Taketsugu, T. Morokuma,
K. Artificial force induced reaction (AFIR) method for exploring
quantum chemical potential energy surfaces. Chem. Rec. 2016, 16,
2232–2248.
(16) Sameera, W. M. C.; Maeda, S.; Morokuma, K. Computational
catalysis using the artificial force induced reaction method. Acc.
Chem. Res. 2016, 49, 763–773.
(17) At obtained stationary structures, Gibbs free energy values were
estimated through the harmonic vibrational analysis, where all fre-
quencies below 50 cm–1 were replaced by 50 cm–1, see: Ryu, H.; Park,
J.; Kim, H. K.; Park, J. Y.; Kim, S.-T.; Baik, M.-H. Pitfalls in compu-
tational modeling of chemical reactions and how to avoid them. Or-
ganometallics 2018, 37, 3228−3239.
ACS Paragon Plus Environment