Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
ChemCatChem, 2013,
modified noble metal catalysts in hydrogenation and
hydrogenolysis reactions9c,12, the first order with respect to H2
pressure suggests that H2 was heterolytically dissociated to
produce active hydride (H-) and proton (H+) and nucleophilic
attack of the produced hydride species to the nitro group was the
rate-determining step.
Bokhoven, ACS Catal., 2012,
2
, 2079D; O(gI:)10M.1.03J9. /BCe7CieCr0, 0J6.-5M3E.
Andanson and A. Baiker, ACS Catal., 2012, 2, 2587; (h) A.
Corma, P. Serna, P. Concepción and J. J. Calvino, J. Am. Chem.
Soc., 2008, 130, 8748.
(a) L. Wang, J. Zhang, H. Wang, Y. Shao, X. Liu, Y.-Q. Wang, J.
P. Lewis and F.-S. Xiao, ACS Catal., 2016, 6, 4110; (b) A. L.
5
As above, the reaction proceeds via nucleophilic attack of the
produced hydride species to the nitro group of adsorbed
nitroarenes on MoOx species, and the improvement of activity
and selectivity can be due to strong adsorption of nitroarenes on
MoOx species and formation of hydride species at the active sites,
the interface between Ru metal and MoOx species. The hydride
species are generally active for nucleophilic addition due to the
anionic nature of the hydride, and also it is well-known that
hydride species are effective for the hydrogenation of polarized
functional groups such as carbonyl groups [13]. Therefore, the
formation of the hydride species will contribute to the high
activity and selectivity. Since the hydride species are considered
to be formed at the interface between Ru metals and MoOx
species, the structure of MoOx-covered Ru metals over Ru-
MoOx/SiO2 catalyst plays an important role on the formation of
the reactive hydride species. In addition, the structure of Ru-
MoOx/SiO2 catalyst will enhance the supply of the substrate to
the active site, leading to the high activity as well as the low
reaction order with respect to the substrate concentration.
Moreover, the structure of Ru-MoOx/SiO2 will decrease
adsorption of the substrate on bare Ru metals and suppress the
hydrogenation of the olefin group in the substrate, resulting in
high selectivity.
Nuzhdin, B. L. Moroz, G. A. Bukhtiyarova, S. I. Reshetnikov, P.
A. Pyrjaev, P. V. Aleksandrov and V. I. Bukhtiyarov,
ChemPlusChem, 2015, 80, 1741; (c) Y. Matsushima, R.
Nishiyabu, N. Takanashi, M. Haruta, H. Kimura and Y. Kubo, J.
Mater. Chem., 2012, 22, 24124; (d) K.-i. Shimizu, Y. Miyamoto,
T. Kawasaki, T. Tanji, Y. Tai and A. Satsuma, J. Phys. Chem. C,
2009, 113, 17803; (e) A. Corma and P. Serna, Science, 2006,
313, 332.
6
7
8
(a) L. Liu, P. Concepción, A. Corma, J. Catal., 2016, 340, 1; (b)
B. Chen, F. Li, Z. Huang and G. Yuan, ChemCatChem, 2016, 8,
1132; (c) X. Wang and Y. Li, J. Mol. Catal. A, 2016, 420, 56; (d)
Z. Wei, J. Wang, S. Mao, D. Su, H. Jin, Y. Wang, F. Xu, H. Li and
Y. Wang, ACS Catal., 2015, 5, 4783; (e) F. A. Westerhaus, R. V.
Jagadeesh, G. Wienhöfer, M.-M. Pohl, J. Radnik, A.-E. Surkus,
J. Rabeah, K. Junge, H. Junge, M. Nielsen, A. Brückner and M.
Beller, Nat. Chem., 2013,
(a) S. Furukawa, K. Takahashi and T. Komatsu, Chem. Sci., 2016,
, 4476; (b) R. V. Jagadeesh, A.-E. Surkus, H. Junge, M.-M. Pohl,
5, 537.
7
J. Radnik, J. Rabeah, H. Huan, V. Schünemann, A. Brückner,
and M. Beller, Science, 2013, 342, 1073; (c) T. Mitsudome, Y.
Mikami, M. Matoba, T. Mizugaki, K. Jitsukawa and K. Kaneda,
Angew. Chem. Int. Ed., 2012, 51, 136; (d) Y. Zhang, F. Hou and
Y. Tan, Chem. Commun., 2012, 48, 2391; (e) K.-i. Shimizu, Y.
Miyamoto and A. Satsuma, J. Catal., 2010, 270, 86.
(a) S. Liu, M. Tamura, Y. Nakagawa and K. Tomishige, ACS
Sustainable Chem. Eng., 2014, 2, 1819; (b) S. Liu, Y. Amada, M.
Tamura, Y. Nakagawa and K. Tomishige, Green Chem., 2014,
16, 617; (c) K. Chen, M. Tamura, Z. Yuan, Y. Nakagawa and K.
In conclusion, Ru-MoOx/SiO2 catalyst acted as an effective
heterogeneous catalyst for selective hydrogenation of the nitro
group in functionalized nitroarenes, providing the corresponding
amines in high yields (85-99%). Addition of MoOx species to
Ru/SiO2 formed the active site at the interface between Ru metal
and MoOx species, where the substrate was strongly adsorbed on
MoOx species and active hydride species were formed on Ru
metal, leading to the drastic improvement of both the activity and
selectivity.
Tomishige, ChemSusChem, 2013,
6
, 613; (d) Y. Amada, S. Koso,
, 728;
Y. Nakagawa and K. Tomishige, ChemSusChem, 2010,
3
(e) Y. Nakagawa, Y. Shinmi, S. Koso and K. Tomishige, J. Catal.,
2010, 272, 191; (f) S. Koso, N. Ueda, Y. Shinmi, K. Okumura, T.
Kizuka and K. Tomishige, J. Catal., 2009, 267, 89; (g) S. Koso, I.
Furikado, A. Shimao, T. Miyazawa, K. Kunimori and K.
Tomishige, Chem. Commun., 2009, 2035.
(a) Y. Takeda, M. Tamura, Y. Nakagawa, K. Okumura, K.
Tomishige, Catal. Sci. Technol., 2016, 6, 5668; (b) Y. Takeda,
9
M. Tamura, Y. Nakagawa, K. Okumura, K. Tomishige, ACS
Catal., 2015, , 7034; (c) Y. Takeda, T. Shoji, H. Watanabe, M.
Tamura, Y. Nakagawa, K. Okumura, K. Tomishige,
ChemSusChem, 2015, , 1170; (d) Y. Takeda, Y. Nakagawa, K.
Tomishige, Catal. Sci. Technol., 2012, , 2221.
5
Notes and references
8
2
1
(a) H.-U. Blaser, H. Steiner and M. Studer, ChemCatChem,
2009, , 210; (b) G. A. Somorjai and J. Y. Park, Angew. Chem.
Int. Ed., 2008, 47, 9212; (c) S. Nishimura and K. Ebitani,
ChemCatChem, 2016, , 2303.
(a) P. Claus, Top. Catal., 1998,
Armbrüster, K. Kovnir, M. S. Tikhov, R. M. Lambert, J. Catal.,
2009, 261, 60.
(a) R. S. Downing, P. J. Kunkeler and H. Van Bekkum, Catal.
Today., 1997, 37, 121; (b) M. Pietrowski, Curr. Org. Synth.,
2012, 9, 470.
(a) C. Berguerand, A. Yarulin, F. Cárdenas-Lizana, J. Wärnå, E.
Sulman, D. Y. Murzin and L. Kiwi-Minsker, Ind. Eng. Chem. Res.,
2015, 54, 8659; (b) H. Yoshida, N. Igarashi, S.-i. Fujita, J.
Panpranot and M. Arai, Catal. Lett., 2015, 145, 606; (c) A.
Yarulin, C. Berguerand, I. Yuranov, F. Cárdenas-Lizana, I.
Prokopyeva and L. Kiwi-Minsker, J. Catal., 2015, 321, 7; (d) H.
Wei, X. Liu, A. Wang, L. Zhang, B. Qiao, X. Yang, Y. Huang, S.
10 (a) M. Tamura, K. Tokonami, Y. Nakagawa, K. Tomishige, Chem.
Commun., 2013, 49, 7034; (b) M. Tamura, K. Tokonami, Y.
1
Nakagawa, K. Tomishige, ACS Catal., 2016, 6, 3600.
8
11 (a) M. Tamura, R. Tamura, Y. Takeda, Y. Nakagawa, K.
Tomishige, Chem. Eur. J., 2015, 21, 3097; (b) M. Tamura, R.
Tamura, Y. Takeda, Y. Nakagawa, K. Tomishige, Chem.
Commun., 2014, 50, 6656.
2
3
4
5, 51; (b) E. Galloway, M.
12 (a) S. Koso, H. Watanabe, K. Okumura, Y. Nakagawa, K.
Tomishige, Appl. Catal. B, 2012, 111-112, 27; (b) Y. Amada, Y.
Shinmi, S. Koso, T. Kubota, Y. Nakagawa and K. Tomishige,
Appl. Catal. B, 2011, 105, 117.
13 (a) R. M. Bullock, Chem. Eur. J., 2004, 10, 2366; (b) R. Noyori,
Angew. Chem. Int. Ed., 2002, 41, 2008.
Miao, J. Liu and T. Zhang, Nat. Commun., 2014,
5, 5634; (e) E.
Boymans, S. Boland, P. T. Witte, C. Müller and D. Vogt,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins