10.1002/chem.201903789
Chemistry - A European Journal
COMMUNICATION
[2]
a) Y. Takezawa, K. Nishiyama, T. Mashima, M. Katahira, M. Shionoya,
Chem. Eur. J. 2015, 21, 14713-14716; b) K. Tanaka, A. Tengeiji, T. Kato,
N. Toyama, M. Shionoya, Science 2003, 299, 1212-1213; c) M. Su, M.
Tomás-Gamasa, T. Carell, Chem. Sci. 2015, 6, 632-638; d) X. Guo, P.
Leonard, S. A. Ingale, J. Liu, H. Mei, M. Sieg, F. Seela, Chem. Eur. J.
2018, 24, 8883-8892; e) S. K. Jana, X. Guo, H. Mei, F. Seela, Chem.
Commun. 2015, 51, 17301-17304; f) J. M. Méndez-Arriaga, C. R.
Maldonado, J. A. Dobado, M. A. Galindo, Chem. Eur. J. 2018, 24, 4583-
4589; g) N. Santamaría-Díaz, J. M. Méndez-Arriaga, J. M. Salas, M. A.
Galindo, Angew. Chem. Int. Ed. 2016, 55, 6170-6174; h) S. K. Maity, T.
Lönnberg, Chem. Eur. J. 2018, 24, 1274-1277; i) D. U. Ukale, T.
Lönnberg, Angew. Chem. Int. Ed. 2018, 57, 16171-16175; j) B. Jash, J.
Müller, Angew. Chem. Int. Ed. 2018, 57, 9524-9527; k) B. Jash, J. Müller,
Chem. Eur. J. 2018, 24, 10636-10640; l) S. Mandal, A. Hepp, J. Müller,
Dalton Trans. 2015, 44, 3540-3543; m) L. L. G. Al-Mahamad, O. El-Zubir,
D. G. Smith, B. R. Horrocks, A. Houlton, Nat. Commun. 2017, 8, 720; n)
O. P. Schmidt, G. Mata, N. W. Luedtke, J. Am. Chem. Soc. 2016, 138,
14733-14739; o) A. Fujii, O. Nakagawa, Y. Kishimoto, T. Okuda, Y.
Nakatsuji, N. Nozaki, Y. Kasahara, S. Obika, Chem. Eur. J. 2019, 25,
7443-7448; p) I. Schönrath, V. B. Tsvetkov, T. S. Zatsepin, A. V. Aralov,
J. Müller, J. Biol. Inorg. Chem. 2019, 24, 693-702; q) N. Sandmann, J.
Bachmann, A. Hepp, N. L. Doltsinis, J. Müller, Dalton Trans. 2019, 48,
10505-10515; r) N. Sandmann, D. Defayay, A. Hepp, J. Müller, J. Inorg.
Biochem. 2019, 191, 85-93.
caged thymidine residue. When using a bidentate ligand as the
complementary nucleobase, an unprecedented stepwise duplex
stabilization was accomplished. Here, the addition of HgII leads to
the formation of a stabilizing metal-mediated base pair involving
the caged nucleobase. Subsequent photo-deprotection results in
an additional increase in stability. The possibility of using light as
an external trigger for metal-mediated base pair formation and the
ability to use two orthogonal triggers for the stepwise formation of
metal-mediated base pairs of different stability significantly
expands the scope of metal-modified nucleic acids. In
combination with DNA that switches its topology upon metal-
mediated base pair formation, interesting applications are
anticipated.
Experimental Section
The phosphoramidites of TNPP and P were prepared according to published
[10b]
procedures.[10b, 17] The TPP nucleoside was prepared in analogy to TNPP
.
Details are given in the Supporting Information. All other phosphoramidites
were purchased (Glen Research). The oligonucleotides were synthesized
and purified as described previously.[17] The desalted oligonucleotides
were characterized by MALDI-TOF mass spectrometry (ODN1: calcd. for
[M+H]+: 3966 Da, found: 3967 Da; ODN2: calcd. for [M+H]+: 4097 Da,
found: 4096 Da; ODN3: calcd. for [M+H]+: 3803 Da, found: 3803 Da;
ODN4: calcd. for [M+H]+: 4260 Da, found: 4262 Da; ODN5: calcd. for
[M+H]+: 4149 Da, found: 4150 Da; ODN6: calcd. for [M+H]+: 3921 Da,
found: 3920 Da). During oligonucleotide quantification, the following molar
[3]
[4]
a) J. Müller, Coord. Chem. Rev. 2019, 393, 37-47; b) J. Kondo, Y. Tada,
T. Dairaku, Y. Hattori, H. Saneyoshi, A. Ono, Y. Tanaka, Nat. Chem.
2017, 9, 956-960; c) J. Kondo, T. Sugawara, H. Saneyoshi, A. Ono,
Chem. Commun. 2017, 53, 11747-11750.
a) S. Liu, G. H. Clever, Y. Takezawa, M. Kaneko, K. Tanaka, X. Guo, M.
Shionoya, Angew. Chem. Int. Ed. 2011, 50, 8886-8890; b) J. C. Léon, Z.
She, A. Kamal, M. H. Shamsi, J. Müller, H.-B. Kraatz, Angew. Chem. Int.
Ed. 2017, 56, 6098-6102; c) E. Beall, A. Sargun, S. Ulku, Y. Bae, E.
Wierzbinski, C. Clever, D. H. Waldeck, C. Achim, J. Phys. Chem. C 2018,
122, 7533-7540.
extinction coefficients were used: TNPP, 260 = 7.5 cm2 mol–1 [10b]
= 4.2 cm2 mol–1; P, 260 = 10.0 cm2 mol–1 [5b]
;
TPP, 260
.
The UV melting experiments were carried out on a UV spectrometer CARY
100 Bio (Agilent) in a 1 cm quartz cuvette. The UV melting profiles were
[5]
a) S. Taherpour, O. Golubev, T. Lönnberg, Inorg. Chim. Acta 2016, 452,
43-49; b) B. Jash, P. Scharf, N. Sandmann, C. Fonseca Guerra, D. A.
Megger, J. Müller, Chem. Sci. 2017, 8, 1337-1343.
measured in buffer (1
M DNA duplex, 150 mM NaClO4, 2.5 mM Mg(ClO4)2,
5 m buffer (pH 6.8: MOPS, pH 9.0: borate) either with or without
M
[6]
[7]
J. C. Léon, G. González-Abradelo, C. A. Strassert, J. Müller, Chem. Eur.
J. 2018, 24, 8320-8324.
Hg(ClO4)2 at a scan rate of 1 °C min–1 with detection at 260 nm. CD spectra
were measured using a J-815 spectropolarimeter (JASCO) at 10 °C in the
same solution. Each irradiation experiment was performed for 1 min (at ca.
50 °C for duplexes I – III at pH 6.8 or at room temperature in all other
cases) using a 500 W Hg/Xe arc lamp (Newport) equipped with a 1.5 inch
water filter and a 335 nm longpass filter (Schott). NMR spectra were
recorded on Bruker Avance(I) 400 and Avance(III) 400 instruments. NMR
spectra were referenced to residual solvent peaks (CD3OD, CD2Cl2) or to
tetramethylsilane (CDCl3).
a) Y. Takezawa, S. Yoneda, J.-L. H. A. Duprey, T. Nakama, M. Shionoya,
Chem. Sci. 2016, 7, 3006-3010; b) D. M. Engelhard, J. Nowack, G. H.
Clever, Angew. Chem. Int. Ed. 2017, 56, 11640-11644.
[8]
a) L. Anhäuser, F. Muttach, A. Rentmeister, Chem. Commun. 2018, 54,
449-451; b) V. Adam, D. K. Prusty, M. Centola, M. Škugor, J. S. Hannam,
J. Valero, B. Klöckner, M. Famulok, Chem. Eur. J. 2018, 24, 1062-1066;
c) S. Boháčová, Z. Vaníková, L. Poštová Slavětínská, M. Hocek, Org.
Biomol. Chem. 2018, 16, 5427-5432; d) S. Wang, L. Yue, Z.-Y. Li, J.
Zhang, H. Tian, I. Willner, Angew. Chem. Int. Ed. 2018, 57, 8105-8109.
a) Q. Liu, A. Deiters, Acc. Chem. Res. 2014, 47, 45-55; b) C. Brieke, F.
Rohrbach, A. Gottschalk, G. Mayer, A. Heckel, Angew. Chem. Int. Ed.
2012, 51, 8446-8476.
[9]
Acknowledgements
[10] a) A. Heckel, G. Mayer, J. Am. Chem. Soc. 2005, 127, 822-823; b) L.
Kröck, A. Heckel, Angew. Chem. Int. Ed. 2005, 44, 471-473.
[11] S. Litau, J. Müller, Z. Anorg. Allg. Chem. 2015, 641, 2169-2173.
[12] B. Jash, J. Müller, Chem. Eur. J. 2017, 23, 17166-17178.
[13] S. Walbert, W. Pfleiderer, U. E. Steiner, Helv. Chim. Acta 2001, 84, 1601-
1611.
We gratefully acknowledge funding by the Westfälische Wilhelms-
Universität Münster (fellowship to S.N.) and thank Dr. Matthias C.
Letzel for the mass spectrometric experiments.
Keywords: bioinorganic chemistry • nucleic acid • metal-
[14] An additional influence could be different kinetics of hybridisation of
duplexes I – III that lead to a decreased rate of photo-deprotection of the
TNPP:TNPP pair in duplex III.
mediated base pair • caged nucleoside
[1]
a) S. Naskar, R. Guha, J. Müller, Angew. Chem. Int. Ed. 2019, doi:
10.1002/anie.201905913; b) Y. Takezawa, J. Müller, M. Shionoya, Chem.
Lett. 2017, 46, 622-633; c) Y. Tanaka, J. Kondo, V. Sychrovský, J.
Šebera, T. Dairaku, H. Saneyoshi, H. Urata, H. Torigoe, A. Ono, Chem.
Commun. 2015, 51, 17343-17360; d) G. H. Clever, C. Kaul, T. Carell,
Angew. Chem. Int. Ed. 2007, 46, 6226-6236.
[15] J. Šebera, J. Burda, M. Straka, A. Ono, C. Kojima, Y. Tanaka, V.
Sychrovský, Chem. Eur. J. 2013, 19, 9884-9894.
[16] B. Jash, J. Neugebauer, J. Müller, Inorg. Chim. Acta 2016, 452, 181-187.
[17] P. Scharf, B. Jash, J. A. Kuriappan, M. P. Waller, J. Müller, Chem. Eur.
J. 2016, 22, 295-301.
This article is protected by copyright. All rights reserved.