[
43–46]
literature procedures (Scheme 11).
The anomeric
References
ACCEPTED MANUSCRIPT
thioacetal of 5 was hydrolyzed and benzoylation afforded
compound 27 in 70% yield . The 4-position was deprotected
with DDQ to provide acceptor 28 in 74% yield.
[1]
D. Loqué, H. V Scheller, M. Pauly, Curr. Opin. Plant Biol.
015, 25, 151–161.
[47]
2
[48]
[2]
S. Haghighi Mood, A. Hossein Golfeshan, M. Tabatabaei,
G. Salehi Jouzani, G. H. Najafi, M. Gholami, M. Ardjmand,
Renew. Sustain. Energy Rev. 2013, 27, 77–93.
[3]
[4]
[5]
[6]
B. C. Saha, J. Ind. Microbiol. Biotechnol. 2003, 30, 279–
2
91.
A. Ebringerová, Z. Hromádková, Biotechnol. Genet. Eng.
Rev. 1999, 16, 325–346.
F. Peng, P. Peng, F. Xu, R.-C. Sun, Biotechnol. Adv. 2012,
3
0, 879–903.
P. Lalégerie, G. Legler, J. M. Yon, Biochimie 1982, 64,
77–1000.
9
Scheme 11: a) BzCl, pyridine, b) i. NBS, acetone/H O (10:1), ii.
2
[
[
[
7]
8]
9]
H. Driguez, Chembiochem 2001, 2, 311–318.
H. Driguez, Top. Curr. Chem. 1997, 187, 85–116.
Y.-W. Kim, A. L. Lovering, H. Chen, T. Kantner, L. P.
McIntosh, N. C. J. Strynadka, S. G. Withers, J. Am. Chem.
Soc. 2006, 128, 2202–3.
D. H. Hutson, J. Chem. Soc. C 1967, 442–444.
M. Hrmova, T. Imai, S. J. Rutten, J. K. Fairweather, L.
Pelosi, V. Bulone, H. Driguez, G. B. Fincher, J. Biol. Chem.
BzCl, Et N, CH Cl , c) DDQ, CH Cl /H O (9:1).
3
2
2
2
2
2
The coupling between thioglycoside donor 5 and acceptor 28
afforded 29 in 92% yield by employing the promoter system
NIS/TMSOTf. The PMB group of 29 was removed to gain
acceptor 4, which was reacted with the S-disaccharide donor 3
in CH Cl and TMSOTf affording tetrasaccharide 2 in 78%
[
10]
[11]
2
2
2
002, 277, 30102–30111.
J. S. Andrews, B. D. Johnston, B. M. Pinto, Carbohydr. Res.
998, 310, 27–33.
B. D. Johnston, B. M. Pinto, Carbohydr. Res. 1998, 310,
7–25.
yield. Glycosylation with disaccharide 25 resulted in an α/β-
ratio of 1:1 and was not pursued further. The final step to gain
S-linked tetraxylan 1 was global deprotection under basic
conditions.
[12]
[13]
[14]
[15]
1
1
L. J. Hoyos, M. Primet, H. Praliaud, J. Chem. Soc. Faraday
Trans. 1992, 88, 3367.
E. Repetto, V. E. Manzano, M. L. Uhrig, O. Varela, J. Org.
Chem. 2012, 77, 253–65.
[
[
16]
17]
L. Wang, J. Chem. Soc. Perkin Trans. 1 1990, 1677–1682.
M. Blanc-Muesser, J. Defaye, H. Driguez, Carbohydr. Res.
1
978, 67, 305–328.
[18]
F. M. Ibatullin, K. A. Shabalin, J. V Jänis, S. I. Selivanov,
Tetrahedron Lett. 2001, 42, 4565–4567.
[19]
[20]
[21]
D. Horton, M. L. Wolfrom, 1961, 27, 1794–1800.
M. Blanc-Muesser, J. Chem. Soc. Perkin Trans. 1 1982.
J. Defaye, H. Driguez, E. Ohleyer, C. Orgeret, C. Viet,
Carbohydr. Res. 1984, 130, 317–321.
[
[
[
[
22]
23]
24]
25]
E. Fischer, B. Helferich, P. Ostman, Berichte der Dtsch.
Chem. Gesellschaft 1920, 53B, 873–886.
S. Muller, A. Wilhelms, Berichte der Dtsch. Chem.
Gesellschaft 1941, 74B, 698–705.
W. Schneider, R. Gille, K. Eisfeld, Berichte der Dtsch.
Chem. Gesellschaft 1928, 61B, 1244–1259.
J. Bogusiak, I. Wandzik, W. Szeja, Carbohydr. Lett. 1996,
Scheme 12: a) NIS, TMSOTf, CH Cl , -35 ˚C, b) DDQ,
2
2
CH Cl /H O (9:1), c) TMSOTf, CH Cl , MS 4Ǻ, -30 ˚C, d) 1
M
2
2
2
2
2
NaOH, MeOH.
Different strategies for the assembly of S-linked disaccharides
have been investigated, both involving 1-thioglycoside donors
and thioacceptors. In the latter strategy, the leaving group of
the donor proved to be critical for the success of the coupling.
When the procedure involved 1-thioglycosides, the protecting
groups present on the acceptor was shown to influence the
stability of the C4-triflate acceptor greatly and therefore also
affect the yield of the coupling reaction. In both routes, side-
products were determined, where disulphide formation and
elimination of the triflate were observed as the major
challenges. Both approaches have shown to be useful for the
synthesis of the thiolinkages in oligoxylans assembly.
However, the method involving 1-thioglycosides was found to
be often preferable due to the minor amounts of byproducts
obtained in the reaction mixture.
1
, 411–416.
[26]
[27]
F. D. Tropper, F. O. Andersson, S. Cao, R. Roy, J.
Carbohydr. Chem. 1992, 11, 741–750.
P. Biely, Z. Kratky, M. Vrsanska, Eur. J. Biochem. 1981,
1
19, 559–564.
[
[
28]
29]
P. Finch, Carbohydr. Res. 1991, 210, 319–325.
S. Oscarson, U. Tedebark, J. Carbohydr. Chem. 1996, 15,
5
07–512.
H. G. Fletcher, C. S. Hudson, J. Am. Chem. Soc. 1947, 69,
21–924.
[
30]
31]
9
[
L.-X. Wang, Y. C. Lee, J. Chem. Soc. Perkin Trans. 1 1996,
581.
M. Blanc-Muesser, L. Vigne, H. Driguez, J. Lehmann, J.
Steck, K. Urbahns, Carbohydr. Res. 1992, 224, 59–71.
V. Moreau, J. C. Norrild, H. Driguez, Carbohydr. Res.
[32]
[33]
[34]
[35]
1
997, 300, 271–277.
F. Ratajczak, L. Greffe, S. Cottaz, H. Driguez, Synlett 2003,
003, 1253–1254.
Target 1 has been synthesized by a 2+2 block-strategy, which
involves the final coupling of an S-disaccharide and an O-
disaccharide. The synthesis of other S-linked oligoxylans, as
well as their application as enzyme inhibitors, is undergoing
in our laboratories.
2
A. V. Demchenko, Handbook of Chemical Glycosylation:
Advances in Stereoselectivity and Therapeutic Relevance,
2
008.
R. V. Stick, K. A. Stubbs, Tetrahedron: Asymmetry 2005,
6, 321–335.
[36]
1