4
Tetrahedron Letters
cooperative process. Successive studies on the detailed
mechanism and applications of the new method are
underway in our laboratory.
Acknowledgments
This work was supported by the National Natural Science
Foundation of China (21572051, 21602057), Ministry of
Education of the People's Republic of China (213027A),
Education Department of Hunan Province (15A109), Opening
Fund of Key Laboratory of Chemical Biology and Traditional
Chinese Medicine Research (Ministry of Education of China),
Hunan
Normal
University
(KLCBTCMR201707,
KLCBTCMR201708).
References and notes
1. (a) Nakao, Y.; Sahoo, A. K.; Imanaka, H.; Yada, A.; Hiyama, T.
Pure Appl. Chem. 2006, 78, 435. (b) Suzawa, K.; Ueno, M.;
Wheatley, A. E. H.; Kondo, Y. Chem. Commun. 2006, 42, 4850.
(c) Pierrat, P.; Gros, P.; Fort, Y. Org. Lett. 2005, 7, 697. (d)
Denmark, S. E.; Sweis, R. F. in Metal-Catalyzed Cross-
Coupling Reactions, Vol. 1, 2nd ed. (Eds.: De Meijere, A.;
Diederich, F.), Wiley-VCH, Weinheim, 2004. (e) Abele, E.;
Lukevics, E. Heterocycles 2002, 57, 361. (f) Langkopf, E.;
Schinzer, D. Chem. Rev. 1995, 95, 1375.
2. (a) Franz, A. K.; Wilson, S. O. J. Med. Chem. 2013, 56, 388. (b)
Mortensen, M.; Husmann, R.; Veri, E.; Bolm, C. Chem. Soc.
Rev. 2009, 38, 1002. (c) Barnes, M. J.; Conroy, R.; Miller, D. J.;
Mills, J. S.; Montana, J. G.; Pooni, P. K.; Showell, G. A.;
Walsh, L. M.; Warneck, J. B. H. Bioorg. Med. Chem. Lett.
2007, 17, 354. (d) Tacke, R.; Heinrich, T.; Bertermann, R.;
Burschka, C.; Hamacher, A.; Kassack, M. U. Organometallics
2004, 23, 4468. (e) Tacke, R.; Handmann, V.; Bertermann, I.
R.; Burschka, C.; Penka, M.; Seyfried, C. Organometallics
2003, 22, 916. (f) Showell, G. A.; Mills, J. S. Drug Discovery
Today 2003, 8, 551.
Scheme 4. Possible Mechanism for the Synthesis of 2a
Based on the present experimental results, as well as
previous reported mechanisms,5-14 the hypothetical catalytic
cycle is shown in Scheme 4. The reaction starts with
oxidative addition of Pd(0) to C-X bond, followed by a 5-
exo trig carbopalladation to form alkylpalladium(II)
intermediate
to the five-membered palladacycle
B
. Then a C-H activation step would give rise
. In general, two
C
reaction pathways [A: Pd(IV) versus B: Pd(II)-Pd(II)] for
the disilylation of hexamethyldisilane are considerable. Path
A: intermediate
the Pd(IV) intermediate
C
occurs an oxidative addition to generate
. Finally, the intermediate
D
D
undergoes double reductive elimination and affords the
product 2a. Path B: the reaction starts with oxidative
addition of Si-Si bond to Pd(0)
transmetalation-type exchange, and finally reductive
elimination of C-Si bond to afford the product 2a
The strategic utility of the trimethylsilyl was
,
followed by
.
3. (a) Mochida, K.; Shimizu, M.; Hiyama, T. J. Am. Chem. Soc.
2009, 131, 8350. (b) Bai, D.; Han, S.; Lu, Z.-H.; Wang, S. Can.
J. Chem. 2008, 86, 230. (c) Iida, A.; Nagura, K.; Yamaguchi, S.
Chem. Asian. J. 2008, 3, 1456. (d) You, Y.; An, C.-G.; Kim, J.-
J.; Park, S. Y. J. Org. Chem. 2007, 72, 6241. (e) Liu, X.-M.; He,
C.; Huang, J.; Xu, J. Chem. Mater. 2005, 17, 434. (f) Kumagai,
T.; Itsuno, S. Macromolecules 2002, 35, 5323.
demonstrated
through
selective
iodination
and
bromination,8a-8c and the corresponding products were
afforded in good yields (Scheme 5).
4. (a) Nguyen, T.-H.; Castanet, A.-S.; Mortier, J. Org. Lett. 2006,
8, 765. (b) Manoso, A. S.; Ahn, C.; Soheili, A. C.; Handy, J.;
Correia, R.; Michael Seganish, W.; DeShong, P. J. Org. Chem.
2004, 69, 8305. (c) Hartung, C. G.; Fecher, A.; Chapell, B.;
Snieckus, V. Org. Lett. 2003, 5, 1899. (d) Luliński, S.;
Serwatowski, J.; J. Org. Chem. 2003, 68, 9384. (e) Denmark, S.
E.; Neuville, L. Org. Lett., 2000, 2, 3221. (e) Denmark, S. E.;
Wehrli, D. Org. Lett., 2000, 2, 565.
5. (a) Pan, J.-L.; Chen, C.; Ma, Z.-G.; Zhou, J.; Wang, L.-R.;
Zhang, S.-Y. Org. Lett. 2017, 19, 5216. (b) Denmark, S. E.;
Kallemeyn, J. M. Org. Lett. 2003, 5, 3483. (c) Postigo, A.;
Rossi, R. A. Org. Lett. 2001, 3, 1197. (d) Suginome, M.; Ito, Y.
Chem. Rev. 2000, 100, 3221.
6. (a) McNeill, E.; Barder, T. E.; Buchwald, S. L. Org. Lett. 2007,
9, 3785. (b) Denmark, S. E.; Kallemeyn, J. M. Org. Lett. 2003,
5, 3483. (c) Postigo, A.; Rossi, R. A. Org. Lett. 2001, 3, 1197.
(d) Shirakawa, E.; Kurahashi, T.; Yoshidab, H.; Hiyama, T.
Chem. Commun. 2000, 36, 1895. (e) Tobisu, M.; Kita, Y.; Ano,
Y.; Chatani, N. J. Am. Chem. Soc. 2008, 130, 15982; (f) Tobisu,
M.; Kita, Y.; N. Chatani, J. Am. Chem. Soc. 2006, 128, 8152.
7. (a) Maji, A.; Guin, S.; Feng, S.; Dahiya, A.; Singh, V. K.; Liu,
P.; Maitia, D. Angew. Chem. Int. Ed., 2017, 56, 14903. (b) Liu,
Scheme 5. Synthetic Utility of the Silylation Products
In conclusion, we have developed the palladium-
catalyzed disilylation of the spirocyclic palladacycles with
hexamethylsilane. Furthermore, the crossover experiments
have proved that the disilylation reaction underwent a