A. Quintard et al. / Tetrahedron: Asymmetry 18 (2007) 1926–1933
1931
MeOH). Yield = 76%. TLC: eluant: CH2Cl2/n-heptane: 8/
2. Visualisation: UV, Rf = 0.54, 1H NMR (300 MHz,
CDCl3, 298 K): d 7.11 (d, 2H, J = 2.4 Hz, H–Ar); 7.01
(d, 2H, J = 2.7 Hz, H–Ar); 6.98 (s, 4H, H–Ar); 3.87–3.71
(s + AB, 8H, 4Ar–CH2–Ar); 3.54 (dd, 2H, J = 11.2,
3.3 Hz, O–CH2–CHO); 3.38 (t, 4H, J = 7.5 Hz, 2O–CH2–
CH2–CH3); 3.23 (dd, 2H, J = 11.3, 5.2 Hz, O–CH2–
CHO); 2.79 (m, 2H, 2O–CH2–CHO–CH2); 2.57 (t, 2H,
J = 5.1 Hz, CH2–CHO–CH2–O); 2.30 (dd, 2H, J = 5.4,
2.7 Hz, CH2–CHO–CH2–O); 1.38–1.15 (m, 43H, 2O–
CH2–CH2–CH3, 4t-Bu and 1O–CH2–CH2–CH3); 0.73 (t,
3H, J = 7.8 Hz, O–CH2–CH2–CH3). 13C NMR (75 MHz,
CDCl3, 298 K): 154.7 (ArC–O–CH2); 154.0 (ArC–O–
CH2); 143.9 (ArC–t-Bu); 143.8 (ArC–t-Bu); 133.3 (ArC–
CH2); 133.0 (ArC–CH2); 126.4 (ArCH); 72.3 (O–CH2–
CH2–CH3); 71.4 (O–CH2–CHO); 50.7 (O–CH2–CHO–
CH2); 44.6 (CH2–CHO–CH2); 38.8 (Ar–CH2–Ar); 38.6
(Ar–CH2–Ar); 33.9 (Ar–C(CH3)3); 31.4 (CH3); 22.4
(O–CH2–CH2–CH3); 10.0 (O–CH2–CH2–CH3). ES-MS
ing organic mixture was then washed twice with 10 ml
H2O, dried over Na2SO4, filtrated and evaporated. The
pure product 4a (0.204 g, 0.217 mmol) was obtained as a
white powder by precipitation in the residual benzylamine.
Yield = 81%. TLC: eluant: n-heptane/ethyl acetate: 8/2.
1
Visualisation: UV, Rf = 0.3, H NMR (300 MHz, CDCl3,
298 K): d 7.30–7.35 (m, 5H, H–Ar); 7.21 (s, 2H, H–Ar);
7.08 (s, 2H, H–Ar); 6.92 (d, 1H, J = 3.0 Hz, H–Ar); 6.87
(d, 1H, J = 3.0 Hz, H–Ar); 6.63 (dd, 2H, J = 6.7, 1.0 Hz,
H–Ar); 4.14–4.21 (m, 1H, O–CH2–CH(OH)–CH2); 4.10
(d, 2H, J = 12.3 Hz, Ar–CH2–Ar); 3.84–3.91 (AB, 2H,
J = 13.2 Hz, O–CH2–CH(OH)); 3.43–3.76 (m, 12H, 3O–
CH2–CH2–CH3, 2Ar–CH2–Ar and NH–CH2–Ar); 3.04
(d, 2H, J = 12.6 Hz, Ar–CH2–Ar); 2.75 (dd, 1H, J = 8.2,
3.9 Hz CH2NHCH2Ar); 2.66 (dd, 1H, J = 9.6, 6.9 Hz
CH2NHCH2Ar); 1.81–1.85 (m, 4H, 2O–CH2–CH2–CH3);
1.51–1.59 (m, 2H, O–CH2–CH2–CH3); 1.39 (s, 9H, t-Bu);
1.33 (s, 9H, t-Bu); 0.95–1.08 (m, 24H, 2t-Bu and 2O–
CH2–CH2–CH3); 0.71 (t, 3H, J = 7.5 Hz, O–CH2–CH2–
CH3). 13C NMR (75 MHz, CDCl3, 298 K): 154.7 (ArC–
O–CH2); 153.8 (ArC–O–CH2); 145.0 (ArC–t-Bu); 143.8
(ArC–t-Bu); 135.7 (ArC–CH2); 132.6 (ArC–CH2); 132.4
(ArC–CH2); 128.5 (ArCH); 127.2 (ArCH); 76.2
(ArOCH2–CH2); 75.4 (ArOCH2–CH2); 74.7 (O–CH2–
CH(OH)); 69.1 (O–CH2–CH(OH)–CH2); 53.5 (NH–CH2–
Ar); 50.9 (CH2–CH(OH)–CH2–O); 37.8 (Ar–CH2–Ar);
37.6 (Ar–CH2–Ar); 34.0 (Ar–C(CH3)3); 31.4 (CH3); 30.8
(Ar–CH2–Ar); 23.6 (O–CH2–CH2–CH3); 21.7 (O–CH2–
CH2–CH3); 10.6 (O–CH2–CH2–CH3); 9.4 (O–CH2–CH2–
CH3). ES-MS m/z = 938.7 [M+H]+, IR (solid) m = 2958,
m/z = 845.3 [M+H]+, IR (solid): m = 2961, 2870, 1473,
20
1454, 1361, 1197, 1117, 1029, 1012, 909, 869. ½aꢁD ¼ ꢂ6:2
(c 0.975, CHCl3), decomposition if T >305 ꢁC.
4.6. Compound (R,R)-3c
Compound 2c (0.40 g, 0.80 mmol) and 2.10 g (6.4 mmol) of
Cs2CO3 were dissolved under nitrogen in 8 ml of DMF for
30 min. (R)-Glycidyl-tosylate (0.500 g, 2.18 mmol) was
then added and the mixture stirred at 80 ꢁC under nitrogen
for 11 h and then stopped. Twenty milliliters of H2O were
added and the aqueous layer extracted by 3 · 20 ml
CH2Cl2. The resulting organic layer was then washed by
3 · 30 ml of H2O (pH 6), dried over Na2SO4, filtrated
and evaporated. The pure product 3c (0.238 g, 0.383 mmol)
was obtained as a yellowish-white powder by re-crystallisa-
tion (CH2Cl2/MeOH). Yield = 48%. TLC: eluant: CH2Cl2/
n-heptane: 8/2. Visualisation: UV, Rf = 0.12, 1H NMR
(300 MHz, CDCl3, 298 K): d 7.10 (t, 4H, J = 5.6 Hz, H–
Ar); 7.02 (d, 4H, J = 7.3 Hz, H–Ar); 6.73 (t, 4H,
J = 5.6 Hz, H–Ar); 3.82 (dd, 2H, J = 6.7, 2.4 Hz, O–
CH2–CHO); 3.46–3.65 (m, 14H, 3O–CH2 and 4Ar–CH2–
Ar); 3.12 (m, 2H, O–CH2–CHO–CH2); 2.79 (t, 2H,
J = 4.1 Hz, CH2–CHO–CH2–O); 2.55 (dd, 2H, J = 2.8,
2.6 Hz, CH2–CHO–CH2–O); 1.68–1.56 (m, 4H, O–CH2–
CH2–CH3); 0.90 (t, 6H, J = 7.4 Hz, O–CH2–CH2–CH3).
13C NMR (75 MHz, CDCl3, 298 K): 156.7 (ArC–O–
CH2); 156.6 (ArC–O–CH2); 133.9 (ArC–CH2); 130.1
(ArCH); 121.8 (ArCH); 121.7 (ArCH); 73.4 (O–CH2–
CH2–CH3); 71.7 (O–CH2–CHO); 50.9 (O–CH2–CHO–
CH2); 44.7 (CH2–CHO–CH3); 38.7 (Ar–CH2–Ar); 38.5
(Ar–CH2–Ar); 22.5 (O–CH2–CH2–CH3); 10.1 (O–CH2–
2873, 1474, 1197, 1119, 1045, 1011, 868, 733, 697.
20
½aꢁD ¼ ꢂ2:5 (c 0.91, CHCl3), mp = 238–239 ꢁC.
4.8. Compound (R,R)-4b
Compound 3b (0.102 g, 0.120 mmol) was dissolved in 1 ml
(9.2 mmol) of benzylamine in a micro-wave vial. The
mixture was heated in the microwave for 1.5 h at 150 ꢁC;
200 W. Benzylamine was then reduced to third and the
pure product 4b (0.036 g, 0.033 mmol) was obtained as
white crystals through crystallisation by adding MeOH.
Yield = 28%. 1H NMR (300 MHz, CDCl3, 298 K): d
7.21–7.30 (m, 10H, H–Ar); 7.03 (d, 2H, J = 2.1 Hz, H–
Ar); 6.97 (m, 6H, H–Ar); 3.78–3.92 (m, 8H, 4Ar–CH2–
Ar); 3.70 (s, 4H, 2NH–CH2–Ar); 3.57 (t, 2H, J = 8.7 Hz,
1O–CH2–CH(OH)); 3.44 (m, 2H, 2O–CH2–CH(OH)–
CH2); 3.37 (dd, 2H, J = 5.4, 2.4 Hz, O–CH2–CH(OH));
3.25 (t, 4H, J = 7.8 Hz, 2O–CH2–CH2–CH3); 2.42 (AB,
4H, J = 3.9 Hz, 2CH2NHCH2Ar); 1.37 (s, 2H, t-Bu);
1.26–1.27 (2s, 34H, t-Bu); 0.83 (m, 4H, 2O–CH2–CH2–
CH3); 0.58 (t, 6H, J = 7.8 Hz, 2O–CH2–CH2–CH3), 13C
NMR (300 MHz, CDCl3, 298 K): 154.7 (ArC–O–CH2);
154.4 (ArC–O–CH2); 149.8 (ArC–t-Bu); 132.7 (ArC–
CH2); 132.2 (ArC–CH2); 128.8 (ArCH); 12.9 (ArCH);
125.87 (ArCH); 73.4 (O–CH2–CH2–CH3); 71.9 (O–CH2–
CH(OH)); 68.2 (O–CH2–CH(OH)–CH2); 53.3 (NH–CH2–
Ar); 51.0 (CH(OH)–CH2–NH); 39.2 (Ar–CH2–Ar); 39.0
(Ar–CH2–Ar); 33.9 (Ar–C(CH3)3); 31.5 (CH3); 21.9 (O–
CH2–CH2–CH3); 9.8 (O–CH2–CH2–CH3), ES-MS m/z =
1059.6 [M+H]+, IR solid m = 3513, 2959, 2901, 2870,
1760, 1481, 1361, 1208, 1122, 1015, 867, 744, 697.
CH2–CH3). ES-MS m/z = 621.2 [M+H]+, IR (solid):
20
m = 2933, 1449, 1245, 1188, 1008, 759. ½aꢁD ¼ ꢂ8:5 (c
1.015, CHCl3), mp = 217–221 ꢁC.
4.7. Compound (R)-4a
Compound 3a (0.196 g, 0.267 mmol) and 0.123 g
(1.06 mmol) of CaCl2 were stirred at 80 ꢁC in 2 ml
(18.4 mmol) of benzylamine. The reaction was stopped
after 11 h by adding 10 ml of a solution of aqueous NH4Cl,
followed by extraction by 3 · 20 ml of CH2Cl2, The result-