Regioselective En zym a tic Acyla tion of
Meth yl Sh ik im a te. In flu en ce of Acyl Ch a in
Len gth a n d Solven t P ola r ity on En zym e
Sp ecificity
Nuria Armesto, Miguel Ferrero, Susana Ferna´ndez, and
Vicente Gotor*
Departamento de Quı´mica Orga´nica e Inorga´nica, Facultad
de Quı´mica, Universidad de Oviedo, 33071-Oviedo, Spain
F IGURE 1.
VGS@sauron.quimica.uniovi.es
Received March 1, 2002
ing steps. This methodology has been extensively used
with carbohydrates.5 Riva and co-workers6 have shown
that lipase from Chromobacterium viscosum (CVL) se-
lectively esterifies the hydroxyl group at the C-4 position
of methyl quinate (4) and benzyl quinate (5). However,
acylation of methyl shikimate (2) did not display regi-
oselectivity with any of the enzymes tested. To our
knowledge, regioselective enzymatic acylation of shikimic
acid derivatives has not been described, although satu-
rated and unsaturated esters (among them, cynnamoyl
esters) of quinic and shikimic acids were shown to be
plant metabolites,7 some of them with a broad spectrum
of biological activities. In our research program directed
toward the syntheses of quinic and shikimic acid deriva-
tives,8 we describe here the regioselective enzymatic
acylation of methyl shikimate and the influence of several
parameters such as enzyme, solvent, temperature, and
acyl chain length on the rate and regioselectivity.
The three hydroxyls present in the shikimic acid lead
to low solubility and reactivity, and therefore to increase
the reaction rate and shift the thermodynamic equilib-
rium toward acylation of the substrate, activated esters
were used. First, enzymatic acylation of methyl shikimate
(2) was done in vinyl acetate as both the solvent and the
acylating agent and in the presence of 4 Å molecular
sieves (Scheme 1).
Abstr a ct: Candida antarctica lipase A (CAL-A) selectively
catalyzes the acylation at the secondary C-4 hydroxyl group
of methyl shikimate (2), which possesses three secondary
hydroxyl groups, the C-3 allylic one being chemically more
reactive. The effect both of the acyl group of the acylating
agents and of the solvent polarity has been studied. The
selectivity of CAL-A is almost complete with acyl donors that
possess short chains. However, when acyl donors have longer
chains, better results are obtained by C. antarctica lipase B
(CAL-B).
Shikimic acid (1, Figure 1) is a key intermediate in the
biosynthesis of the amino acids L-phenylalanine, L-
tryptophan, and L-tyrosine, as well as being a precursor
to the folate coenzymes and various isoprenoid quinones.1
The enzymes in this pathway are unique to plants, fungi,
and microorganisms and are therefore important targets
as potential herbicidal, antifungal, and antibacterial
agents that do not affect mammals.2 As a result, increas-
ing effort has been directed toward the syntheses of
shikimate analogues.1c,3
This metabolite, together with quinic acid (3), an
alternate carbon source in the shikimate pathway, pos-
sesses several hydroxyl groups of similar reactivity in its
structure, and a clear discrimination between them still
remains a difficult task. Enzymatic modification4 offers
a highly efficient process compared to conventional
chemical syntheses using the process of blocking/deblock-
For the screening of suitable biocatalysts, lipases from
Candida antarctica A (CAL-A), C. antarctica B (CAL-
B), Pseudomonas cepacia (PSL-C), C. viscosum (CVL),
and Candida rugosa (CRL) were tested together with the
protease subtilisin (Table 1).
(5) (a) Davis, B. G. J . Chem. Soc., Perkin Trans. 1 2000, 14, 2137-
2160. (b) Ferna´ndez-Mayorales, A. Top. Curr. Chem. 1997, 186, 1-20.
(c) Gijsen, H. J . M.; Qiao, L.; Fitz, W.; Wong, C.-H. Chem. Rev. 1996,
96, 443-473. (d) Drueckhammer, D. G.; Hennen, W. J .; Pederson, R.
L.; Barbas, C. F., III; Gautheron, C. M.; Krach, T.; Wong, C.-H.
Synthesis 1991, 499-525.
(1) (a) Knaggs, A. R. Nat. Prod. Rep. 2000, 17, 269-292. (b) Haslam,
E. Shikimic Acid Metabolism and Metabolites; Wiley and Sons:
Chichester, U.K., 1993. (c) Campbell, M. M.; Sainsbury, M.; Searle, P.
A. Synthesis 1993, 179-193. (d) Weiss, V.; Edwards, J . M. The
Biosynthesis of Aromatic Compounds; Wiley-Interscience: New York,
1987; pp 260-270.
(2) (a) Roberts, F.; Roberts, C. W.; J ohnson, J . J .; Kyle, D. E.; Krell,
T.; Coggins, J . R.; Coombs, G. H.; Milhous, W. K.; Tzipori, S.; Ferguson,
D. J . P.; Chakrabarti, D.; McLeod, R. Nature 1998, 393, 801-805. (b)
Sikorski, J . A.; Gruys, K. J . Acc. Chem. Res. 1997, 30, 2-8. (c)
Kozlowski, M. C.; Tom, N. J .; Seto, C. T.; Sefler, A. M.; Bartlett, P. A.
J . Am. Chem. Soc. 1995, 117, 2128-2140. (d) Grossbard, E.; Atkinson,
D. The Herbicide Glyphosate; Butteworths: Boston, 1985.
(6) Danielli, B.; De Bellis, P.; Barzhaghi, L.; Carrea, G.; Ottolina,
G.; Riva, S. Helv. Chim. Acta 1992, 75, 1297-1304.
(7) (a) Sefkow, M.; Kelling, A.; Schilde, U. Eur. J . Org. Chem. 2001,
2735-2742, and references therein. (b) Chen, T.; Li, J .; Cao, J .; Xu,
Q.; Komatsu, K.; Namba, T. Planta Med. 1999, 65, 56-59. (c) Saito,
T.; Yamane, H.; Murofushi, N.; Takahashi, N.; Phinney, B. O. Biosci.,
Biotechnol., Biochem. 1997, 61, 1397-1398. (d) Dupre, S.; Grenz, M.;
J akupovic, J .; Bohlmann, F.; Niemeyer, H. M. Phytochemistry 1991,
30, 1211-1220. (e) Barrero, A. F.; Sa´nchez, J . F.; Alvarez-Manzaneda,
E. J . R.; Alvarez-Manzaneda, R. R. Phytochemistry 1988, 27, 1191-
1194.
(8) (a) Oves, D.; D´ıaz, M.; Ferna´ndez, S.; Ferrero, M.; Gotor, V.
Synth. Commun. 2001, 31, 2335-2343. (b) D´ıaz, M.; Ferrero, M.;
Ferna´ndez, S.; Gotor, V. J . Org. Chem. 2000, 65, 5647-5652. (c)
Armesto, N.; Ferrero, M.; Ferna´ndez, S.; Gotor, V. Tetrahedron Lett.
2000, 41, 8759-8762. (d) D´ıaz, M.; Ferrero, M.; Ferna´ndez, S.; Gotor,
V. Tetrahedron Lett. 2000, 41, 775-779. (e) Ferna´ndez, S.; D´ıaz, M.;
Ferrero, M.; Gotor, V. Tetrahedron Lett. 1997, 38, 5225-5228.
(3) J iang, S.; Singh, G. Tetrahedron 1998, 54, 4697-4753.
(4) (a) Klibanov, A. M. Nature 2001, 409, 241-246. (b) Koeller, K.
M.; Wong, C.-H. Nature 2001, 409, 232-240. (c) Roberts, S. M.; Turner,
N. J .; Willetts, A. J .; Turner, M. K. Introduction to Biocatalysis Using
Enzymes and Microorganisms; Cambridge University Press: New
York, 2000. (d) Faber, K. Biotransformations in Organic Chemistry,
4th ed.; Springer-Verlag: Berlin, 2000. (e) Carrea, G.; Riva, S. Angew.
Chem., Int. Ed. 2000, 39, 2226-2254. (f) Bornscheuer, U. T.; Kazlaus-
kas, R. J . Hydrolases in Organic Synthesis: Regio- and Stereoselective
Biotransformations; Wiley-VCH: Weinheim, Germany, 1999.
10.1021/jo025671p CCC: $22.00 © 2002 American Chemical Society
Published on Web 05/21/2002
4978
J . Org. Chem. 2002, 67, 4978-4981