Organometallics
Note
3DT was obtained as a white powder in 50% yield by
recrystallization of the reaction mixture from CH2Cl2. Mp: 210−211
°C, isolated as a 2:1 complex of 3DT and 2T including four molecules
of CH2Cl2. 1H NMR (CDCl3): δ −0.08 (d, J = 7 Hz, 12H), −0.01 (d,
J = 7 Hz, 12H), 0.41 (t, J = 7 Hz, 12H), 1.10 (d, J = 7 Hz, 24H), 1.13
(d, J = 7 Hz, 12H, Tip2TeO2), 1.16 (d, J = 7 Hz, 12H), 1.21 (d, J = 7
Hz, 6H, Tip2TeO2), 1.41 (d, J = 7 Hz, 12H), 1.44 (t, J = 7 Hz, 12H),
1.59 (dt, J = 7 and 7 Hz, 4H), 2.69 (sept, J = 7 Hz, 4H), 2.88 (dt, J = 7
and 7 Hz, 4H), 2.88 (sept, J = 7 Hz, 1H, Tip2TeO2), 3.12 (dt, J = 7
and 7 Hz, 4H), 3.30 (sept, J = 7 Hz, 4H), 3.51 (dt, J = 7 and 7 Hz,
4H), 4.09 (sept, J = 7 Hz, 2H, Tip2TeO2), 5.41 (sept, J = 7 Hz, 4H),
6.54 (d, J = 2 Hz, 4H), 6.63 (dd, J = 8 and 1 Hz, 4H), 6.84 (dd, J = 8
and 1 Hz, 4 H), 6.97 (dd, J = 8 and 8 Hz, 4H), 7.05 (d, J = 2 Hz, 4H),
7.14 (s, 2H, Tip2TeO2). 13C NMR (CDCl3): δ 14.9, 17.4, 21.6, 23.6
(Tip2TeO2), 23.8, 23.8 (Tip2TeO2), 23.9, 24.3, 24.6, 25.5, 25.8, 28.6,
29.5, 29.9, 32.8 (Tip2TeO2), 34.0, 34.3 (Tip2TeO2), 123.3, 124.0,
124.8 (Tip2TeO2), 125.6, 127.9, 129.2, 138.0 (Tip2TeO2), 144.9,
147.4, 149.0, 149.5, 150.3, 150.5, 151.2, 152.3 (Tip2TeO2), 154.8
(Tip2TeO2). 125Te NMR (CDCl3, Tip2TeO δ 1319): δ 797, 1388. IR
(KBr, cm−1): 3040, 2958, 2928, 2867, 1459, 679, 645, 606, 442. Anal.
Calcd for C234H342O22Cl8Te13: C, 51.57; H, 6.33. Found: C, 51.53; H,
6.58.
ACKNOWLEDGMENTS
■
Financial support from Tokai University is gratefully acknowl-
language review.
REFERENCES
(1) Lederer, K. Ber. Dtsch. Chem. Ges. 1915, 48, 1345.
(2) Petragnani, N.; Vicentini, G. Univ. Sao Paulo, Fac. Filosof., Cienc.
Letras, Bol. Quim. 1959, 5, 75.
(3) (a) Petragnani, N.; Stefani, H. A. Tellurium in Organic Chemistry,
2nd ed.; Academic Press: Amsterdam, 2007. (b) Barton, D. H. R.;
Finet, J. P.; Thomas, M. Tetrahedron 1986, 42, 2319. (c) Hu, N. X.;
Aso, Y.; Otsubo, T.; Ogura, F. Tetrahedron Lett. 1986, 27, 6099.
(d) Kambe, N.; Tsukamoto, T.; Miyoshi, N.; Murai, S.; Sonoda, N.
Chem. Lett. 1987, 269. (e) Hu, N. X.; Aso, Y.; Otsubo, T.; Ogura, F.
Phosphorus Sulfur Relat. Elem. 1988, 38, 177.
(4) Oba, M.; Okada, Y.; Nishiyama, K.; Shimada, S.; Ando, W. Chem.
Commun. 2008, 5378.
(5) Beckmann, J.; Bolsinger, J.; Duthie, A.; Finke, P. Organometallics
■
̃
2012, 31, 238.
(6) (a) Alcock, N. W.; Harrison, W. D. J. J. Chem. Soc., Dalton Trans.
3DD was obtained as a white powder in 66% yield. Mp: 195−197
°C dec. 1H NMR (CDCl3): δ 0.75 (t, J = 7 Hz, 12H), 0.57 (t, J = 7 Hz,
12H), 1.35 (t, J = 7 Hz, 12H), 1.38 (t, J = 7 Hz, 12H), 1.78 (dq, J = 7
and 7 Hz, 4H), 1.95 (dq, J = 7 and 7 Hz, 4H), 2.26 (dq, J = 7 and 7
Hz, 4H), 2.85 (dq, J = 7 and 7 Hz, 4H), 2.96 (dq, J = 7 and 7 Hz, 4H),
3.18 (dq, J = 7 and 7 Hz, 4H), 3.65 (dq, J = 7 and 7 Hz, 4H), 4.60 (dq,
J = 7 and 7 Hz, 4H), 6.47 (dd, J = 7 and 2 Hz, 4H), 6.49 (dd, J = 7 and
1 Hz, 4H), 6.83 (dd, J = 7 and 1 Hz, 4H), 6.93 (dd, J = 7 and 7 Hz,
4H), 7.01 (dd, J = 7 and 7 Hz, 4H), 7.06 (dd, J = 7 and 2 Hz, 4H). 13C
NMR (CDCl3): δ 14.1, 16.4, 16.6, 17.2, 25.2, 25.7, 28.2, 28.9, 125.5,
127.4, 128.5, 128.9, 129.3 (overlapped), 145.6, 145.7, 145.9, 147.0,
149.6, 153.0. 125Te NMR (CDCl3, Tip2TeO δ 1319): δ 779, 1396. IR
(KBr, cm−1): 3049, 2957, 2930, 2870, 1455, 795, 683, 655, 607, 432.
Anal. Calcd for C80H104O10Te6: C, 48.25; H, 5.26. Found: C, 48.24; H,
5.29.
Reaction of 3DD with Ph3P. A solution of 3DD (19.9 mg, 10.0
μmol) and Ph3P (46.4 mg, 177 μmol) in CDCl3 (1 mL) was
maintained at room temperature, and the reaction progress was
monitored by 1H NMR spectroscopy. After 6 days, the broad 1H NMR
signals assigned to unidentified intermediates disappeared completely,
and quantitative formation of Dep2Te, DepTeTeDep, and Ph3PO was
observed.
1982, 709. (b) Klapotke, T. M.; Krumm, B.; Mayer, P.; Piotrowski, H.;
̈
Ruscitti, O. P. Z. Naturforsch. 2002, 57b, 145. (c) Oba, M.; Okada, Y.;
Endo, M.; Tanaka, K.; Nishiyama, K.; Shimada, S.; Ando, W. Inorg.
Chem. 2010, 49, 10680.
(7) Beckmann, J.; Dakternieks, D.; Duthie, A.; Ribot, F.; Schurmann,
̈
M.; Lewcenko, N. A. Organometallics 2003, 22, 3257.
(8) (a) Beckmann, J.; Finke, P.; Hesse, M.; Wettig, B. Angew. Chem.,
Int. Ed. 2008, 47, 9982. (b) Beckmann, J.; Bolsinger, J.; Finke, P.;
Hesse, M. Angew. Chem., Int. Ed. 2010, 49, 8030.
(9) (a) Beckmann, J.; Bolsinger, J.; Duthie, A. Chem. Eur. J. 2011, 17,
930. (b) Beckmann, J.; Duthie, A.; Gesing, T. M.; Koehne, T.; Lork, E.
Organometallics 2012, 31, 3451.
(10) Citeau, H.; Kirschbaum, K.; Conrad, O.; Giolando, D. M. Chem.
Commun. 2001, 2006.
(11) Srivastava, K.; Sharma, S.; Singh, H. B.; Singh, U. P.; Butcher, R.
J. Chem. Commun. 2010, 46, 1130.
(12) Beckmann, J.; Bolsinger, J.; Duthie, A.; Finke, P. Organometallics
2012, 31, 289.
(13) Crystal data of 3TT: C120H184O10Te6, Mr = 2552.37, crystal
dimensions 0.18 × 0.16 × 0.09 cm3, triclinic, a = 14.8010(10) Å, b =
18.3641(13) Å, c = 25.2862(17) Å, α = 94.6230(10)°, β =
93.0820(10)°, γ = 109.7500(10)°, V = 6423.5(8) Å3, T = 153(2) K,
Theoretical Calculations. All of the calculations were performed
using the Gaussian 09 program package.14 The starting geometries
were taken from the X-ray structure of 3TT and optimized with the
DFT at the B3PW91 level. The LANL2DZdp basis set was used for
Te, whereas the 6-31G(d,p) basis set was used for C, H, and O.
Stationary points were confirmed to be minima by vibrational
frequency calculations that gave no imaginary frequencies.
space group P1 (No. 2), Z = 2, ρcalcd = 1.32 gcm−3, μ(Mo Kα) = 1.394
̅
mm−1, 38309 reflections measured, 27340 independent reflections
(Rint = 0.0239). The final R1 value was 0.0446 (I > 2σ(I)). The final
wR2(F2) value was 0.1024 (all data). The goodness of fit on F2 was
1.011. CCDC-951783 contains supplementary crystallographic data
for this compound. These data can be obtained free of charge from
(14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.;
Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador,
P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,
Revision B.01; Gaussian, Inc., Wallingford, CT, 2010.
ASSOCIATED CONTENT
■
S
* Supporting Information
Text giving experimental details for the preparation of
aryltellurinic anhydrides 1, figures giving H, 13C, and 125Te
1
NMR and IR spectra for tellurinic anhydride−tellurone adducts
3, and a CIF file giving X-ray crystallographic data for 3TT.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
6623
dx.doi.org/10.1021/om400772d | Organometallics 2013, 32, 6620−6623