Organic Letters
Letter
(2) (a) Hegab, M. I.; Abdel-Fattah, A. M.; Yousef, N. M.; Nour, H.
F.; Mostafa, A. M.; Ellithey, M. Arch. Pharm. 2007, 340, 396−403.
(b) Anzini, M.; Cappelli, A.; Vomero, S.; Giorgi, G.; Langer, T.;
Hamon, M.; Merahi, N.; Emerit, B. M.; Cagnotto, A.; Skorupska, M.;
Mennini, T.; Pinto, J. C. J. Med. Chem. 1995, 38, 2692−2704. (c) Vu,
A. T.; Campbell, A. N.; Harris, H. A.; Unwalla, R. J.; Manas, E. S.;
Mewshaw, R. E. Bioorg. Med. Chem. Lett. 2007, 17, 4053−4056.
(3) Ramesh, S.; Nagarajan, R. Tetrahedron Lett. 2011, 52, 4857−
4860.
Scheme 4. Proposed Mechanism
(4) (a) Majumdar, K. C.; Ponra, S.; Taher, A. Synthesis 2011, 463−
468. (b) Ramesh, S.; Gaddam, V.; Nagarajan, R. Synlett 2010, 2010,
757−760.
(5) Bera, R.; Dhananjaya, G.; Singh, S. N.; Ramu, B.; Kiran, S. U.;
Kumar, P. R.; Mukkanti, K.; Pal, M. Tetrahedron 2008, 64, 582−589.
(6) Tomashevskaya, M. M.; Tomashenko, O. A.; Tomashevskii, A.
A.; Sokolov, V. V.; Potekhin, A. A. Russ. J. Org. Chem. 2007, 43, 77−82.
(7) Ibrahim, Y. A.; Moustafa, A. H. J. Chem. Res., Synop. 1999, 4,
254−255.
(8) Jia, W.; Liu, Y. J.; Li, W.; Liu, Y.; Zhang, D. J.; Zhang, P.; Gong, P.
Bioorg. Med. Chem. 2009, 17, 4569−4574.
(9) Mayo, M. S.; Yu, X. Q.; Zhou, X. Y.; Feng, X. J.; Yamamoto, Y.;
Bao, M. J. Org. Chem. 2014, 79, 6310−6314.
(10) Feng, X. J.; Qu, Y. P.; Han, Y. L.; Yu, X. Q.; Bao, M.; Yamamoto,
Y. Chem. Commun. 2012, 48, 9468−9470.
(11) Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303−1324.
(12) The carbon-centered quinone ketoxy radical (•CQK) is trapped
by 2,4-dinitrophenyl-tert-butyl nitrone (DNPBN), and the ESR
spectrum of DNPBN/•CQK is available in the Supporting
aza-Diels−Alder reaction and halogenation (chlorination or
bromination), proceeded smoothly in the presence of chloranil
or bromanil to give the desired halogenated products in
moderate yields. Cu2O functioned as a Lewis acid catalyst and
transition-metal catalyst in the aza-Diels−Alder reaction and
halogenation reaction, respectively. Chloranil and bromanil also
performed dual functions, that is, as a halogen source and
oxidant. Although the halogenated products were obtained in
moderate yields, the present method is highly useful in organic
synthesis because of mild reaction conditions and experimental
simplicity. Further studies on the extension of this method to
synthesize 4-halogenated quinolines are underway.
(13) Khoshkholgh, M. J.; Hosseindokht, M. R.; Balalaie, S.;
Bozorgmehr, M. R.; Bijanzadeh, H. R. Helv. Chim. Acta 2012, 95,
52−60.
(14) Baciocchi, E.; Del Giacco, T.; Elisei, F.; Lanzalunga, O. J. Am.
Chem. Soc. 1998, 120, 11800−11801.
(15) (a) Sheppard, T. D. Org. Biomol. Chem. 2009, 7, 1043−1052.
(b) Wu, H.; Hynes, J. Org. Lett. 2010, 12, 1192−1195.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, characterization, and NMR
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the National Natural Science Foundation of
China (Nos. 21273026 and 21572028) for their financial
support. This work was also supported by the Fundamental
Research Funds for the Central Universities (DUT15LK37)
and the Outstanding Young Scholars Development Growth
Plan of universities in Liaoning Province (LJQ2015027).
REFERENCES
■
(1) (a) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177−2250.
(b) Jafarpour, F.; Hazrati, H.; Zarei, S.; Izadidana, S. Synthesis 2014,
46, 1224−1228. (c) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 1082−
1146.
D
Org. Lett. XXXX, XXX, XXX−XXX