Table 2 Asymmetric epoxidation of alkenes catalysed by ketone (+)-2a
+)-2
(
Conversion
(%)
Yield
(%)
Ee (%)e
configuration
b
c
d
f
Entry
Alkene
(mol%)
t/h
< 3
< 4
< 4
< 6
< 2
24
g
1
2
3
4
5
6
(E)-Stilbene
(E)-a-Methylstilbene
Phenylstilbene
1-Phenylcyclohexene
Styrene
(E)-Methylcinnamate
10
10
10
10
10
25
100
100
100
100
100
88
100
100
97
33
33
76 R,R
73 R,R
83 R
69 R
29 R
h
i
64
64
a
Alkene (0.1 mmol), Oxone® (1.0 mmol KHSO
EDTA (1 ml of 0.4 mmol dm solution), (+)-2. b Relative
23
5
), NaHCO
3
(1.55 mmol), MeCN (1.5 ml), aq. Na
2
c
d
e
1
to alkene. Estimated by TLC. Isolated yield of epoxide product. Enantiomeric excesses were measured by H NMR spectroscopy in the presence of
Eu(hfc) as chiral shift reagent. Absolute configurations were determined by comparison to literature data (refs. 3 and 4). Determined by HPLC (Chiracel
3
OD). Measured by H NMR spectroscopy. Absolute configuration not assigned.
f
g
h
1
i
of this. Earlier 18O labelling experiments (A. Armstrong, P. A. Clarke and
A. Wood, Chem. Commun., 1996, 849) were performed in a two phase,
2 2 2
CH Cl –H O solvent system.
§
1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetra-
fluoroborate).
¶
It is probable that the lower conversions at the 1 mol% level are due to
®
decomposition of the Oxone over the extended reaction times rather than
decomposition of the catalyst.
∑
performed using a Chiracel OD column with 100:1 hexane–Pr OH + 0.1%
The ketone had mp 57.5 °C, [a]2 +7.3 (c 1.16, CH
7
Cl
). Chiral HPLC was
D
2
2
i
3
21
TFA as eluent; detection at 224 nm; flow rate 1 cm min retention time
2
*
7 min (minor enantiomer), 29.3 min (major enantiomer).
* Details will appear in a full account of this work. We thank Dr A. J. Blake
and Dr Wan-Sheung Li of this Department for this structure determina-
tion.
1
2
T. Katsuki, Coord. Chem. Rev., 1995, 140, 189.
S. E. Denmark, D. C. Forbes, D. S. Hays, J. S. DePue and R. G. Wilde,
J. Org. Chem., 1995, 60, 1391.
3
D. Yang, Y.-C. Yip, M.-W. Tang, M.-K. Wong, J.-H. Zheng and
K.-K. Cheung, J. Am. Chem. Soc., 1996, 118, 491; D. Yang,
X.-C. Wang, M.-K. Wong, Y.-C. Yip and M.-W. Tang, J. Am. Chem.
Soc., 1996, 118, 11311.
Fig. 1 Model for the approach of a trans-disubstituted alkene to the
dioxirane derived from ketone (+)-2
4
5
(a) Y. Tu, Z.-X. Wang and Y. Shi, J. Am. Chem. Soc., 1996, 118, 9806;
(b) Z.-X. Wang, Y. Tu, M. Frohn and Y. Shi, J. Org. Chem., 1997, 62,
2
328.
promising) enantioselectivity (entry 6), albeit requiring longer
reaction times and higher catalyst loadings.
C. E. Song, Y. H. Kim, K. C. Lee, S.-G. Lee and B. W. Jin, Tetrahedron:
Asymmetry, 1997, 8, 2921.
In conclusion, we have found that a-fluoro-N-ethoxycar-
6 For earlier attempts to use chiral ketones as catalysts, see R. Curci,
M. Fiorentino and M. R. Serio, J. Chem. Soc., Chem. Commun., 1984,
155; R. Curci, L. D’Accolti, M. Fiorentino and A. Rosa, Tetrahedron
Lett., 1995, 36, 5831; D. S. Brown, B. A. Marples, P. Smith and
L. Walton, Tetrahedron, 1995, 51, 3587.
bonyltropinone is an efficient catalyst for the epoxidation of
®
alkenes by Oxone ; it can be used in low loadings and
recovered and recycled. Moreover, when prepared in enan-
tiomerically pure form, it affords high enantioselectivity for
alkene epoxidation. Attempts to prepare related bicy-
clo[3.2.1]octanone derivatives with alternative a-substitution,
in order to improve enantioselectivity further and to clarify the
factors responsible for asymmetric induction, are underway.
We thank the EPSRC, the DTI and a consortium of chemical
companies for funding this work through the LINK Asymmetric
Synthesis Second Core Programme. We also thank Mr T.
Lowdon (Hicksons) and Dr N. Johnson (Chiroscience) for
helpful discussions. We are grateful to Professor N. S. Simpkins
and Mr C. D. Jones of this Department for supplies of
N-ethoxycarbonyltropinone and of the chiral base 3, and for
helpful advice concerning the asymmetric deprotonation
chemistry.
7
For reviews of dioxirane chemistry, see R. W. Murray, Chem. Rev.,
1989, 89, 1187; W. Adam, R. Curci and J. O. Edwards, Acc. Chem. Res.,
1989, 22, 205; R. Curci, A. Dinoi and M. F. Rubino, Pure Appl. Chem.,
1995, 67, 811; R. Curci, M. Fiorentino, L. Troisi, J. O. Edwards and
R. H. Pater, J. Org. Chem., 1980, 45, 4758.
8 V. K. Aggarwal and M. F. Wang, Chem. Commun., 1996, 191;
A. Armstrong, G. Ahmed, I. Garnett and K. Goacolou, Synlett, 1997,
1075 and references cited therein; P. C. Bulman Page, G. A. Rassias,
D. Bethell and M. B. Schilling, in the press.
9
A. Armstrong and B. R. Hayter, unpublished results; A. Armstrong and
B. R. Hayter, Tetrahedron: Asymmetry, 1997, 8, 1677.
1
0 D. Yang, M.-K. Wong and Y.-C. Yip, J. Org. Chem., 1995, 60, 3887.
1
1 S. E. Denmark, Z. Wu and C. M. Crudden, ACS Meeting Abstract
3
74-ORGN, vol. 214, Las Vegas, September, 1997.
1
1
2 G. S. Lal, J. Org. Chem., 1993, 58, 2791.
3 N. J. Newcombe and N. S. Simpkins, J. Chem. Soc., Chem. Commun.,
1995, 831 and references cited therein.
Notes and References
1
4 K. Bambridge, M. J. Begley and N. S. Simpkins, Tetrahedron Lett.,
†
‡
E-mail: alan.armstrong@nottingham.ac.uk
A dioxirane is almost certainly the active species in the monophasic
1
994, 35, 3391.
MeCN–H
2
O solvent system: A. Armstrong, B. R. Hayter and P. A. Clarke,
1
8
unpublished results. See also ref. 5 for O labelling experiments in support
Received in Liverpool, UK, 2nd December 1997; 7/08695D
622
Chem. Commun., 1998