6642 J. Am. Chem. Soc., Vol. 122, No. 28, 2000
Nam et al.
Scheme 1. Reactive Intermediates Capable of Oxygenating
Organic Substrates in Heme-Containing Enzymes and Iron
Porphyrin Models
enzymes and iron porphyrin models is an iron(III) peroxo
porphyrin complex 1 (Scheme 1).9-12 Valentine and co-workers
reported elegant results recently that in situ generated iron(III)
peroxo porphyrin complexes are powerful nucleophiles capable
of epoxidizing electron-deficient olefins.9 In cytochrome P-450
2B4 and aromatase enzymes, there is growing evidence that 1
is the reactive species responsible for the aldehyde deformylation
and aromatization reactions.11,12
Although it has been shown in a number of reports that
intermediates such as 2 and 3 are involved in iron(III) porphyrin
complex-catalyzed oxygenations of hydrocarbons, it is not
completely clear which reactive species (e.g., 2, 3, or both 2
and 3 at the same time) are responsible for oxygen atom transfer
in the catalytic oxygenation reactions performed at room
temperature and what factors are important to determine the
nature of the reactive intermediates in iron porphyrin model
systems. In this paper, we report the results of the competitive
epoxidations studied with cis- and trans-stilbenes and with
cyclooctene and trans-stilbene in iron(III) porphyrin-catalyzed
epoxidation of olefins by oxidants such as H2O2, tert-butyl
hydroperoxide (t-BuOOH), and m-chloroperoxybenzoic acid
(m-CPBA) in protic and aprotic solvents at room temperature.
We found from the studies that both the intermediates (i.e., 2
and 3) indeed function as reactive species in the epoxidation of
olefins by iron porphyrins at room temperature and that the
participation of 2 and 3 as reactive epoxidizing intermediates
is found to be controlled by the factors such as the solvent
system (i.e., protic and aprotic solvents), the presence of a proton
source in aprotic solvent, and the acidity of alcohol solvents.
Furthermore, we report for the first time that a high-valent
iron(IV) oxo porphyrin cation radical intermediate containing
nonbulky ortho-fluoro substituents at the phenyl groups of
electron-deficient porphyrin ligand shows an unexpected prefer-
ence for trans-stilbene over cis-stilbene in the competitive
epoxidations of cis- and trans-stilbenes.
In addition to the intermediacy of 3, recent studies provided
strong evidence that oxidant-iron(III) porphyrin intermediates
2 are capable of transferring their oxygen to hydrocarbons prior
to the formation of 3 (Scheme 1).6-8 Notably, Vaz et al. reported
elegant results that iron(III)-hydroperoxide (FeIII-OOH) and
iron(III)-hydrogen peroxide (FeIII-H2O2) intermediates function
as electrophilic oxidants in olefin epoxidation and alkane
hydroxylation reactions by cytochrome P-450 enzymes and their
mutants.6 In the mutants lacking threonine in the active site of
cytochromes P-450, the lifetime of iron(III)-hydroperoxide
species is increased, and this intermediate is capable of
oxygenating hydrocarbons prior to the formation of 3. The
involvement of 2 as reactive intermediates has also been
suggested in iron porphyrin complex-catalyzed oxygenations of
hydrocarbons by oxidants such as hydrogen peroxide and
peracids,4c,7,8 especially in the epoxidation of olefins by peracids
at low temperature.8 When the rate of O-O bond cleavage of
2 becomes slow such as in the cases where the reactions are
performed with electron-deficient iron porphyrin complexes,7a,8a
in nonpolar solvents (e.g., toluene),8a or at low temperature,4c
2 is able to transfer its oxygen to easily oxygenated organic
substrates such as olefins prior to the O-O bond cleavage of
2. Another reactive intermediate that has been proposed to effect
the oxidations of organic substrates in cytochrome P-450
(3) (a) Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.;
Evans, B. J. J. Am. Chem. Soc. 1981, 103, 2884-2886. (b) Goh, Y. M.;
Nam, W. Inorg. Chem. 1999, 38, 914-920. (c) Goto, Y.; Watanabe, Y.;
Fukuzumi, S.; Jones, J. P.; Dinnocenzo, J. P. J. Am. Chem. Soc. 1998, 120,
10762-10763. (d) Jones, R.; Jayaraj, K.; Gold, A.; Kirk, M. L. Inorg. Chem.
1998, 37, 2742-2843. (e) Fujii, H.; Yoshimura, T.; Kamada, H. Inorg.
Chem. 1997, 36, 6142-6143. (f) Czarrnecki, K.; Nimri, S.; Gross, Z.;
Proniewicz, L. M.; Kincaid, J. R. J. Am. Chem. Soc. 1996, 118, 2929-
2935. (g) Gross, Z.; Nimri, S. J. Am. Chem. Soc. 1995, 117, 8021-8022.
(h) Gross, Z.; Nimri, S. Inorg. Chem. 1994, 33, 1731-1732. (i) Fujii, H. J.
Am. Chem. Soc. 1993, 115, 4641-4648. (j) Groves, J. T.; Watanabe, Y. J.
Am. Chem. Soc. 1986, 108, 507-508.
(4) (a) Nam, W.; Goh, Y. M.; Lee, Y. J.; Lim, M. H.; Kim, C. Inorg.
Chem. 1999, 38, 3238-3240. (b) Bernadou, J.; Meunier, B. Chem. Commun.
1998, 2167-2173. (c) Lee, K. A.; Nam, W. J. Am. Chem. Soc. 1997, 119,
1916-1922. (d) Gross, Z.; Simkhovich, L. J. Mol. Catal. A: Chem. 1997,
117, 243-248. (e) Bernadou, J.; Fabiano, A.-S.; Robert, A.; Meunier, B.
J. Am. Chem. Soc. 1994, 116, 9375-9376. (f) Traylor, T. G.; Fann, W.-P.;
Bandyopadhyay, D. J. Am. Chem. Soc. 1989, 111, 8009-8010.
(5) (a) Matsui, T.; Ozaki, S.; Watanabe, Y. J. Am. Chem. Soc. 1999,
121, 9952-9957. (b) Matsui, T.; Ozaki, S.; Liong, E.; Phillips, G. N., Jr.;
Watanabe, Y. J. Biol. Chem. 1999, 274, 2838-2844. (c) Matsui, T.; Ozaki,
S.; Watanabe, Y. J. Biol. Chem. 1997, 272, 32735-32738.
(6) (a) Newcomb, M.; Shen, R.; Choi, S.-Y.; Toy, P. H.; Hollenberg, P.
F.; Vaz, A. D. N.; Coon, M. J. J. Am. Chem. Soc. 2000, 122, 2677-2686.
(b) Toy, P. H.; Newcomb, M.; Coon, M. J.; Vaz, A. D. N. J. Am. Chem.
Soc. 1998, 120, 9718-9719. (c) Vaz, A. D. N.; McGinnity, D. F.; Coon,
M. J. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3555-3560.
(7) (a) Primus, J.-L.; Boersma, M. G.; Mandon, D.; Boeren, S.; Veeger,
C.; Weiss, R.; Rietjens, I. M. C. M. J. Biol. Inorg. Chem. 1999, 4, 274-
283. (b) Lee, Y. J.; Goh, Y. M.; Han, S.-Y.; Kim, C.; Nam, W. Chem. Lett.
1998, 837-838. (c) Kamaraj, K.; Bandyopadhyay, D. J. Am. Chem. Soc.
1997, 119, 8099-8100. (d) Pratt, J. M.; Ridd, T. I.; King, L. J. J. Chem.
Soc., Chem. Commun. 1995, 2297-2298.
Results and Discussion
We have studied competitive epoxidations with iron(III)
porphyrin complexes such as (meso-tetrakis(pentafluorophenyl)-
porphinato)iron(III) chloride [Fe(TPFPP)Cl], (meso-tetrakis(2,6-
difluorophenyl)porphinato)iron(III) chloride [Fe(TDFPP)Cl], and
(meso-tetrakis(2,6-dichlorophenyl)porphinato)iron(III) chloride
[Fe(TDCPP)Cl] (see Figure 1 for the structures of iron(III)
porphyrin complexes) and with oxidants such as m-CPBA, H2O2,
and t-BuOOH in protic solvent (i.e., a solvent mixture of CH3-
OH and CH2Cl2) and aprotic solvent (i.e., a solvent mixture of
CH3CN and CH2Cl2) at room temperature under catalytic
reaction conditions. Two sets of competitive epoxidations were
carried out with cis- and trans-stilbenes (eq 1) and with
cyclooctene and trans-stilbene (eq 2), and the yields of the
epoxide products and the product ratios are listed in Tables 1
and 2. We also carried out control reactions with cis-stilbene
(9) (a) Wertz, D. L.; Sisemore, M. F.; Selke, M.; Driscoll, J.; Valentine,
J. S. J. Am. Chem. Soc. 1998, 120, 5331-5332. (b) Selke, M.; Valentine,
J. S. J. Am. Chem. Soc. 1998, 120, 2652-2653. (c) Sisemore, M. F.; Selke,
M.; Burstyn, J. N.; Valentine, J. S. Inorg. Chem. 1997, 36, 979-984. (d)
Selke, M.; Sisemore, M. F.; Valentine, J. S. J. Am. Chem. Soc. 1996, 118,
2008-2012. (e) Sisemore, M. F.; Burstyn, J. N.; Valentine, J. S. Angew.
Chem., Int. Ed. Engl. 1996, 35, 206-208.
(10) (a) Goto, Y.; Wada, S.; Morishima, I.; Watanabe, Y. J. Inorg.
Biochem. 1998, 69, 241-247. (b) Watanabe, Y.; Ishimura, Y. J. Am. Chem.
Soc. 1989, 111, 8047-8049.
(8) (a) Machii, K.; Watanabe, Y.; Morishima, I. J. Am. Chem. Soc. 1995,
117, 6691-6697. (b) Watanabe, Y.; Yamaguchi, K.; Morishima, I.;
Takehira, K.; Shimizu, M.; Hayakawa, T.; Orita, H. Inorg. Chem. 1991,
30, 2581-2582.
(11) (a) Vaz, A. D. N.; Pernecky, S. J.; Raner, G. M.; Coon, M. J. Proc.
Natl. Acad. Sci. U.S.A. 1996, 93, 4644-4648. (b) Raner, G. M.; Chiang,
E. W.; Vaz, A. D. N.; Coon, M. J. Biochemistry 1997, 36, 4895-4902.
(12) Swinney, D. C.; Mak, A. Y. Biochemistry 1994, 33, 2185-2190.