Journal of the American Chemical Society
Page 10 of 11
Chem. 2011, 76, 4260-4336; (d) Gould, N. D.; Wolf, L. M.; Denmark, S.
E. J. Org. Chem. 2011, 76, 4337-4357.
13. We make the assumption that the reaction mechanism under these
modified conditions does not change from that operating under the opti-
mized conditions.
14. Rabinovitz, M.; Cohen, Y.; Halpern, M. Angew. Chem. Int. Ed.
1986, 25, 960-970.
D. J. Wallingford CT, 2009) with the B3LYP/6-31+G(d,p) (Becke, A. D. J.
Chem. Phys. 1993, 98, 1372-1377; Becke, A. D. J. Chem. Phys. 1993, 98,
5648-5652; Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789,
Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys.
Chem. 1994, 98, 11623-11627; Tirado-Rives, J.; Jorgensen, W. L J. Chem.
Theor. Comput. 2008, 4, 297-306) and M06-2X/6-31+G(d,p) (Zhao, Y.;
Truhlar, D. Theor Chem. Acc. 2008, 120, 215-241.) methods were used
for geometry optimizations of minima and transition state structures. Tran-
sition state structures were also reoptimized using CAM-B3LYP/6-
31+G(d,p) (Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004,
1-3, 51-57) and the SMD solvation model (Marenich, A. V.; Cramer, C. J.;
Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396) with THF as the
solvent to address issues associated with dispersion and solvation, respec-
tively (see Supporting Information for details). Stationary points were
characterized via frequency analysis and connected to their respective
minima via Intrinsic Reaction Coordinate (IRC) calculations (Gonzalez,
C.; Schlegel, H. B. J. Chem. Phys. 1991, 95, 5853-5860; Gonzalez, C.;
Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154-2161; C. Lee, C.; Yang, W.;
Parr, R. G. Phys. Rev. B 1988, 37, 785-789; Fukui, K. Acc Chem. Res.
1981, 14, 363-368). Energies reported herein are M06-2X/6-31+G(d,p)
Gibbs free energies at 298.5 K in the gas phase, unless otherwise noted.
29. For asymmetric Mannich reactions that proceed under phase-
transfer catalysis, see: (a) Ooi, T.; Kameda, M.; Fujii, J.; Maruoka, K. Org.
Lett. 2004, 6, 2397-2399; (b) Poulsen, T. B.; Alemparte, C.; Saaby, S.;
Bella, M.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2005, 44, 2896-2899;
(c) Okada, A.; Shibuguchi, T.; Oshima, T.; Masu, H.; Yamaguchi, K.; Shi-
basaki, M. Angew. Chem. Int. Ed. 2005, 44, 4564-4567; (d) Fini, F.; Ber-
nardi, L.; Herrera, R. P.; Pettersen, D.; Ricci, A.; Sgarzani, V. Adv. Synth.
Catal. 2006, 348, 2043-2046; (e) Niess, B.; Jørgensen, K. A. Chem. Com-
mun. 2007, 1620-1622; (f) Shibuguchi, T.; Mihara, H.; Kuramochi, A.;
Ohshima, T.; Shibasaki, M. Chem. Asian J. 2007, 2, 794-801.
1
2
3
4
5
6
7
8
15. Bissette, A. J.; Fletcher, S. P. Angew. Chem. Int. Ed. 2013, 52,
12800-12826.
16. (a) Starks, C. M.; Owens, R. M. J. Am. Chem. Soc. 1973, 95, 3613-
3617; (b) Halpern, M.; Cohen, Y.; Sasson, Y.; Rabinovitz, M. Nouv. J.
Chim. 1984, 8, 443-444; (c) Buhse, T.; Nagarajan, R.; Lavabre, D.; Mi-
cheau, J. C. J. Phys. Chem. A 1997, 101, 3910–3917; (d) Buhse, T.; Lava-
bre, D.; Nagarajan, R.; Micheau, J. C. J. Phys. Chem. A 1998, 102, 10552–
10559; (e) A. J. Bissette, B. Odell and S. P. Fletcher. Nature Commun.
2014, 5, 4607.
17. Zhao, Q.; Sun, J.; Liu, B.; He, J. Chem. Eng. J. 2015, 262, 756-765.
18. (a) Dolling, U. H. Davis P., Grabowski E. J. J. J. Am. Chem. Soc.
1984, 106, 446–447; (b) Hughes, D. L.; Dolling U.-H.; Ryan, K. M.;
Schoenewaldt, E. F.; Grabowski E. J. J. J. Org. Chem. 1987, 52, 4745-
4752.
19. For an autocatalytic phase-transfer reaction in which the reaction
product increases the solubility of the catalyst in the organic phase see:
Glatzer, H. J.; Doraiswamy, L. K. Chem. Eng. Sci. 2000, 55, 5149-5160.
20. For full details see Supporting Information.
21. A corrollary of this is that the configuration and enantiopurity of the
indoline ‘catalyst’ component should not affect the enantioselectivity of the
overall process. This was confirmed by performing the reaction with 10
mol% chiral ammonium salt 26 in the presence of a substoichiometric
amount of racemic indolinyl salt 45 which resulted in identical selectivity
(83:17 e.r., d.r. >20:1).
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
22. Halpern, M.; Feldman, D.; Sasson, Y.; Rabinovitz, M. Angew. Chem.
Int. Ed. 1984, 23, 54-55.
23. This observation is the average of three determinations.
24. This process is best described as autoinduction: Blackmond, D. G. An-
gew. Chem. 2009, 121, 392 –396.
25. (a) Viout, P. J. Mol. Cat. 1981, 10, 231-240; (b) Nelson, K. V.; Ben-
jamin, I. J. of Phys. Chem. C. 2010, 114, 1154-1163; (c) Nelson, K. V.;
Benjamin, I. J. Phys. Chem. C. 2011, 115, 2290-2296.
26. (a) Maķosza, M.; Lasek, W. Tetrahedron 1991, 47, 2843-2850; (b)
Maķosza, M.; Chesnokov, A. Tetrahedron 2000, 56, 3553; (c) Maķosza,
M.; Chesnokov, A. Tetrahedron 2002, 58, 7295; (d) Maķosza, M.; Fedo-
30. Nucleus Independent Chemical Shift (NICS) calculations
(Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. v.
E. J. Am. Chem. Soc. 1996, 118, 6317-6318; Chen, Z.; Wannere, C. S.;
Corminboeuf, C.; Puchata, R.; Schleyer, P. v. R. Chem. Rev. 2005, 105,
3842-3888) were used to probe the aromaticity of the transition states; a
dummy atom was placed at the geometric center of the benzene ring and a
second dummy atom was placed in the center of the forming 5-membered
ring (this dummy resided at the end of a 2.15 Å line segment connected to
the centroid of the benzene ring and bisecting the carbon-carbon bond of
the benzene ring and bearing the two substituents). Images of molecular
structures were created using Ball & Stick (Ball & Stick 4.0a12, Muller, N.;
Faulk, A. Johannes Kepler University Linz 2004).
31. For a related approach see: Knipe, P. C.; Gredicak, M.; Cernijenko,
A.; Paton, R. S.; Smith, M. D. Chem. Eur. J. 2014, 20, 3005-3009.
32. Jiao, H.; Schleyer, P. v. R. J. Phys. Org. Chem. 1998, 11, 655-662.
33. The IUPAC definition of an electrocyclization is ‘a molecular rear-
rangement that involves the formation of a σ-bond between the termini of a
fully conjugated linear π-electron system and a decrease by one in the
number of π-bonds’. Although this definition is consistent with the trans-
formation of 21 to 22, the lack of both aromaticity and disrotation in the
transition structure are key features that indicate the reaction is better
described as nonpericyclic.
ryński, M. Arkivoc, 2006 (iv) 7-17; (e) Lygo, B.; Beynon, C.; Lumley, C.;
McLeod, M. C.; Wade, C. E. Tetrahedron Lett. 2009, 50, 3363–3365.
27. This does not preclude the Brønsted acidic group in catalyst 26 play-
ing a role in the enantioselectivity of the cyclization.
28. Gaussian09 (Revision B.01 Frisch, M. J.; Trucks, G. W.; Schlegel, H.
B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone,
V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;
Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.
A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.;
Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich,
S.; Daniels, A. D.; Farkas; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox,
34. For a discussion of substituent effects on a related reaction see: Gil-
more, K.; Manoharan, M.; I-Chia Wu, J.; Schleyer, P. v. R.; Alabugin, I. V. J.
Am. Chem. Soc., 2012, 134, 10584-10594.
35. We did not observe any evidence suggestive of a change in imine ge-
ometry during the reaction.
ACS Paragon Plus Environment