Page 3 of 4
Journal of the American Chemical Society
commercially available (+)−verbenone. Our synthetic strategy
involves dexterous assembly of 3/5/6 skeleton via
of 29 was confirmed by converting it to bolivianine (1) in five
steps.15
This success encouraged us to attempt a DA/IMHDA cascade
1
2
3
4
5
6
7
8
a
intramolecular cyclopropanation of an allylic metalcarbene
intermediate, and an ambitious DA/IMHDA cascade to elaborate
the EFG tricycle of bolivianine in one pot. Our total synthesis has
allowed us to confirm the absolute configuration of bolivianine
and provides experimental support for a modified biogenetic
pathway.
with 3 and 7. Compound 3 was prepared by IBX oxidation of 2
and then mixed with β-E-ocimene (7) in toluene and heated in a
sealed tube at 150 oC. This ambitious cascade excitingly delivered
bolivianine (1) in 52% yield with no other isomers detected
(Scheme 4). All characterization data of our synthetic 1 were
identical to the reported data, including optical rotation {synthetic
1, [α]26 -52 (c 0.1, CHCl3); natural sample: [α]25 -50 (c 0.2,
ASSOCIATED CONTENT
Supporting Information
Experimental details, characterization data, 1H NMR and 13C
NMR spectra of new compounds. This material is available free
D
D
CHCl3)},1 which confirmed the absolute configuration of
bolivianine and its biogenetic correlation with onoseriolide. This
one-pot cascade fueled two successful chemical transformations,
generating three cycles, four C-C bonds and five stereogenic
centers with excellent selectivities. To the best of our knowledge,
such a complex DA/IMHDA cascade has not been exploited
before,23 and it may prove useful in other natural product
syntheses.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
AUTHOR INFORMATION
Corresponding Author
Scheme 4. Bioinspired synthesis of bolivianine
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
We are also grateful for financial support from NSFC (21021001,
21172154, 21290180) and the MOST of China (973 program,
2010CB833200)..
REFERENCES
(1) Acebey, L.; Sauvain, M.; Beck, S.; Moulis, C.; Gimenez, A.;
Jullian, V. Org. Lett. 2007, 9, 4693.
(2) (a) Acebey, L.; Jullian, V.; Sereno, D.; Chevalley, S.; Estevez,
Y.; Moulis, C.; Beck, S.; Valentin, A.; Gimenez, A.; Sauvain, M.
Planta Med. 2010, 76, 365. (b) Trentin, A. P.; Santos, A. R. S.; Guedes,
A.; Pizzolatti, M. G.; Yunes, R. A.; Calixto, J. B. Planta Med. 1999,
65, 517. (c) Bohlmann, F.; Zdero, C.; King, R. M.; Robinson, H.
Phytochemistry 1980, 19, 689.
(3) (a) Shimada, T.; Endo, T.; Fujii, H.; Hara, M.; Omura, M. Plant.
Sci. 2005, 168, 987. (b) Dudareva, N.; Martin, D.; Kish, C. M.;
Kolosova, N.; Gorenstein, N.; Faldt, J.; Miller, B.; Bohlmann, J. Plant
Cell 2003, 15, 1227.
(4) Lorenzo, D.; Loayza, I.; Dellacassa, E. Flavour Fragr. J. 2003,
18, 32.
(5) Zhan, Z.-J.; Ying, Y.-M.; Ma, L.-F.; Shan, W.-G. Nat. Prod.
Rep. 2011, 28, 594.
(6) Kim, H. J.; Ruszczycky, M. W.; Choi, S.; Liu, Y.; Liu, H.
Nature, 2011, 473, 109.
(7) HessJr., B. A.; Smentek, L. Org. Biomol. Chem. 2012, 10, 7503.
(8) The Diels-Alder reaction has been ubiquitously applied in
natural product synthesis. For related seminal reviews, see: (a) Takao,
K.; Munakata, R.; Tadano, K. Chem. Rev. 2005, 105, 4779. (b)
Stocking, E. M.; Williams, R. M. Angew. Chem. Int. Ed. 2003, 42,
3078. (c) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.;
Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2002, 41, 1668. For
elegant examples, see: (d) Li, C.; Dong, T.; Dian, L.; Zhang, W.; Lei,
X. Chem. Sci. 2013, 4, 1163. (e) Li, C.; Dian, L.; Zhang, W.; Lei, X. J.
Am. Chem. Soc. 2012, 134, 12414. (f) Peng, F.; Danishefsky, S. J. J.
Am. Chem. Soc. 2012, 134, 18860. (g) Evans, D. A.; Adams, D. J.;
Kwan, E. E. J. Am. Chem. Soc. 2012, 134, 8162. (h) Deng, J.; Zhu, B.;
Lu, Z.; Yu, H.; Li, A. J. Am. Chem. Soc. 2012, 134, 920. (i) Snyder, S.
A.; Wespe, D. A.; von Hof, J. M. J. Am. Chem. Soc. 2011, 133, 8850.
(j) Petronijevic, F. R.; Wipf, P. J. Am. Chem. Soc. 2011, 133, 7704. (k)
Herzon, S. B.; Calandra, N. A.; King, S. M. Angew. Chem. Int. Ed.
2011, 50, 8863. (l) Xiao, Q.; Ren, W.-W.; Chen, Z.-X.; Sun, T.-W.; Li,
Y.; Ye, Q.-D.; Gong, J.-X.; Meng, F.-K.; You, L.; Liu, Y.-F. et al
Angew. Chem. Int. Ed. 2011, 50, 7373. (m) Gong, J.-X.; Lin, G.; Sun,
W.-B.; Li, C.-C.; Yang, Z. J. Am. Chem. Soc. 2010, 132, 16745. (n)
Liu, L.-Z.; Han, J.-C.; Yue, G.-Z.; Li, C.-C.; Yang, Z. J. Am. Chem.
To gain further insight into the mechanism of the cascade
o
reaction, we treated 3 with the known compound 30 at 150 C for
2.5 h and observed no reaction (Scheme 5).24 This allowed us to
rule out the possibility of an alternative cascade mechanism
initiated by hetero-Diels-Alder reaction (path c, Scheme 1B). We
also found that compound 31 spontaneously turned to compound
32 after standing in ethyl acetate for two days at room
temperature,15 through an IMHDA process. These observations
lead us to suggest that the most likely biogenetic route to
bolivianene should consist of an initial oxidation of onoseriolide
(2) to 3, subsequent Diels-Alder reaction with β-E-ocimene (7),
probably catalyzed in vivo by a Diels-Alderase, and spontaneous
IMHDA reaction (path b, Scheme 1B).
Scheme 5. Probing the mechanism of the cascade
In conclusion, we completed the first total synthesis of
onoseriolide and bolivianine in 12 and 14 steps respectively from
ACS Paragon Plus Environment