C O M M U N I C A T I O N S
Table 1. Variation of the R-Substituent on 7 for the Cycloaddition
with Dimethylmaleate
tion. Up to four stereogenic centers can be established in this
multicomponent coupling reaction from readily available materials
such as aldehydes, aminoesters, and dienophiles. Further work
toward exploring the asymmetric intramolecular azomethine ylide
[3 + 2] cycloaddition reaction and rapid synthesis of biologically
active compounds will be forthcoming.
Acknowledgment. This work was supported by a Camille and
Henry Dreyfus Teacher-Scholar Award and a NSF grant.
endo-8
entrya
7, R
)
time (h)
% yieldc
% eed
Supporting Information Available: Experimental procedures,
spectral data for all compounds, and stereochemical proofs (PDF). This
1
2
3
4
5
6
7
8
9
10
11
12b
13b
Ph (7a)
7
7
7
7
7
7
7
7
7
14
7
48
48
87
93
98
96
96
90
96
97
73
98
98
82
82
87
88
92
92
90
96
86
90
85
97
84
70
81
p-toluyl (7b)
p-anisole (7c)
4-chlorophenyl (7d)
4-fluorophenyl (7e)
4-cyanophenyl (7f)
2-chlorophenyl (7g)
o-toluyl (7h)
1-naphthyl (7i)
2-naphthyl (7j)
3-pyridyl (7k)
i-Pr (7l)
References
(1) (a) Ahrendt, K. A.; Borths, C. J.; Macmillan, D. W. C. J. Am. Chem. Soc.
2000, 122, 4243. (b) Jen, W. S.; Wiener, J. J. M.; Macmillan, D. W. C.
J. Am. Chem. Soc. 2000, 122, 9874.
(2) (a) Obst, U.; Betschmann, P.; Lerner, C.; Seiler, P.; Diederich, F. HelV.
Chim. Acta 2000, 83, 855. (b) Alvarez-Ibarra, C.; Csa´ky¨, A. G.; Lopez,
I.; Quiroga, M. L. J. Org. Chem. 1997, 62, 479. (c) Waid, P. P.; Flynn,
G. A.; Huber, E. W.; Sabol, J. S. Tetrahedron Lett. 1996, 37, 9874. (d)
Bianco, A.; Maggini, M.; Scorrano, G.; Toniolo, C.; Marconi, G.; Villani,
C.; Prato, M. J. Am. Chem. Soc. 1996, 118, 4072. (e) Fishwick, C. W.
G.; Foster, R. J.; Carr, R. E. Tetrahedron Lett. 1996, 37, 3915. (f)
Kolodziej, S. A.; Nikiforovich, G. V.; Skeean, R.; Lignon, M. F.; Martinez,
J.; Marshall, G. R. J. Med. Chem. 1995, 38, 137.
(3) (a) Pearson, W. H. In Studies in Natural Products Chemistry; Atta-Ur-
Rahman, Ed.; Elsevier: New York, 1998; Vol. I, pp 323-358. (b) Sebahar,
P. R.; Williams, R. M. J. Am. Chem. Soc. 2000, 122, 5666. (c) Denhart,
D. J.; Griffith, D. A.; Heathcock, C. H. J. Org. Chem. 1998, 63, 9616.
(d) Garner, P.; Cox, P. B.; Anderson, J. T.; Protasiewicz, J.; Zaniewski,
R. J. Org. Chem. 1997, 62, 493. (e) Overman, L. E.; Tellew, J. E. J. Org.
Chem. 1996, 61, 8338. (f) Sisko, J.; Henry, J. R.; Weinreb, S. M. J. Org.
Chem. 1993, 58, 4945. (g) Garner, P.; Ho, W. B.; Shin, H. J. Am. Chem.
Soc. 1992, 114, 2762.
cyclohexyl (7m)
a Conditions: imine (1.0 equiv), dimethyl maleate (1.2 equiv), AgOAc
i
(3 mol %), ligand 6b (3.3 mol %), Pr2NEt (10.0 mol %), toluene (3 mL)
at 0 °C, unless indicated otherwise. b Reactions were run at room temper-
ature. c Isolated yield by silica gel chromatography. d Enantiomeric excess
determined by HPLC.
Table 2. Cycloaddition of 7a with Various Dipolarophile
Substrates Catalyzed by Ag(I)-6b
(4) (a) Grigg, R. Chem. Soc. ReV. 1987, 16, 89. (b) Lowin, J. W. In 1,3-
Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; J. Wiley & Sons: New
York, 1984; Vol. 1, p 653. (c) Tsuge, O.; Kanemasa, S. In AdVances in
Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: San
Diego, 1989; Vol. 45, p 232. (d) Vedejs, E. In AdVances in Cycloaddition;
Curran, D. P., Ed.; Jai Press: Greenwich, 1988; Vol. 1, p 351.
(5) Kanemasa, S.; Tsuge, O. In AdVances in Cycloaddition; Curran, D. P.,
Ed.; Jai Press: Greenwich, 1993; Vol. 3, p 99.
(6) Grigg, R.; Sridharan, V. In AdVances in Cycloaddition; Curran, D. P.,
Ed.; Jai Press: Greenwich, 1993; Vol. 3, p 161.
(7) (a) Zou, N.; Jiang, B. J. Comb. Chem. 2000, 2, 6. (b) Tan, D. S.; Folley,
M. A.; Stockwell, B. R.; Shair, M. D.; Schreiber, S. L. J. Am. Chem. Soc.
1999, 121, 9073. (c) Gong, Y. D.; Najdi, S.; Olmstead, M. N.; Kurth, M.
J. J. Org. Chem. 1998, 63, 3081. (d) Marx, M. A.; Grillot, A. L.; Louer,
C. T.; Bearer, K. A.; Bartlett, P. A. J. Am. Chem. Soc. 1997, 119, 6153.
(e) Murphy, M. M.; Schullek, J. R.; Gordon, E. M.; Gollop, M. A. J. Am.
Chem. Soc. 1995, 117, 7029.
(8) For reviews, see: (a) Gothelf, K. V.; Jφrgensen, K. A. Chem. ReV. 1998,
98, 863. (b) Pichon, M.; Figadere, B. Tetrahedron: Asymmetry 1996, 7,
927.
(9) (a) Ruano, J. L. G.; Tito, A.; Peromingo. J. Org. Chem. 2002, 67, 981.
(b) Merino, I.; Laxmi, Y. R. S.; Florez, J.; Barluenga, J.; Ezquerra, J.;
Pedregal, C. J. Org. Chem. 2002, 67, 648. (c) Kopach, M. E.; Fray, A.
H.; Mayers, A. I. J. Am. Chem. Soc. 1996, 118, 9876. (d) Cooper, D. M.;
Grigg, R.; Hargreaves, S.; Kennewell, P.; Redpath, J. Tetrahedron 1995,
51, 7791. (e) Gally, G.; Liebscher, J.; Paetzel, M. J. Org. Chem. 1995,
60, 5005. (f) Grigg, R. Tetrahedron: Asymmetry 1995, 6, 2475. (g) Barr,
D. A.; Dorrity, M. J.; Grigg, R.; Hargreaves, S.; Malone, J. F.;
Montgomery, J.; Redbath, J.; Stevenson, P.; Thornton-Pett, M. Tetrahedron
1995, 51, 273. (h) Waldmann, H.; Blaser, E.; Jansen, M.; Letschert, H.-
P. Angew. Chem., Int. Ed. Engl. 1994, 33, 683.
(10) (a) Schnell, B.; Bernardinelli, G.; Kundig, E. P. Synlett 1999, 348. (b)
Harwood, L. M.; Lilley, T. A. Tetrahedron: Asymmetry 1995, 6, 1157.
(c) Baldwin, J. E.; Turner, S. C. M.; Moloney, M. G. Synlett 1994, 925.
(d) Peyronel, J. F.; Grisoni, S.; Carboni, B.; Courgeon, T.; Carrie´, R.
Tetrahedron 1994, 50, 189. (e) Garner, P.; Dogan, O. J. J. Org. Chem.
1994, 59, 4.
(11) (a) Grigg, R.; Allway, P. Tetrahedron Lett. 1991, 32, 5817. (b) Grigg, R.
Tetrahedron: Asymmetry 1995, 6, 2475.
(12) The stereochemistry was determined by correlation to literature (refs 9
and 10).
A variety of dipolarophiles were explored in the cycloaddition
with 7a as outlined in Table 2. Only the endo products were isolated
in all cases. With dimethyl fumarate, the enantioselectivity is
considerably reduced as compared with dimethyl maleate (52% ee
versus 86% ee). Much lower enantioselectivity was also observed
with methyl acrylate (60% ee). The most interesting result is the
markedly improved enantioselectivity on going from methyl acrylate
to a bulky tert-butyl acrylate, 60 and 93% ee, respectively. A fused
bicyclic pyrrolidine was also synthesized in good yield and
enantioselectivity using N-methyl maleimides as the dipolarophile.
Following is our working model: Coordination of the R-imi-
noester to the chiral Ag(I) catalyst, followed by deprotonation with
i-Pr2NEt, forms the reactive metal-bound azomethine ylide dipole.
Chiral ligand 6b effectively blocks one enantiotopic face of the
azomethine ylide, providing pyrrolidine products with high enan-
tioselectivity. The higher ee observed with dimethyl maleate versus
dimethyl fumarate and tert-butyl acrylate versus methyl acrylate
can be explained by the endo-transition state model. More steric
interaction between these substrates and the chiral ligand results
in better enantiodescrimination. This can explain the improved
enantioselectivity observed with xylyl-FAP (6b) as compared to
FAP (6a). The 3,5-dimethyl substitution extends the steric environ-
ment of the ligand and effectively blocks one of the enantiotopic
faces of the azomethine ylide.
(13) (a) Miyashita, A.; Yasuda, A.; Takaya, H.; Torium, K.; Ito, T.; Souchi,
T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932. (b) Burk, M. J.; Feaster,
J. E.; Harlow, R. L. Organometallics 1990, 9, 2653. (c) Jiang, Q.; Jiang,
Y.; Xiao, D.; Cao, P.; Zhang, X. Angew. Chem., Int. Ed. 1998, 37, 1100.
(d) Zhu, G.; Cao, P.; Jiang, Q.; Zhang, X. J. Am. Chem. Soc. 1997, 119,
1799. (e) Trost, B. M.; Van Vranken, D. L.; Bingel, C. J. Am. Chem.
Soc. 1992, 114, 9327. (f) Longmire, J. M.; Wang, B.; Zhang, X.
Tetrahedron Lett. 2000, 41, 5435. Ligand 6a has been independently
prepared in Dai and Hou’s groups: (g) You, S.-L.; Hou, X.-L.; Dai, L.-
X.; Gao, B.-X.; Sun, J. Chem. Commun. 2000, 1933.
In conclusion, we have developed a highly enantioselective Ag-
(I)-catalyzed azomethine ylide [3 + 2] cycloaddition reaction. These
results demonstrate that FAP ligands are unique for this transforma-
JA025969X
9
J. AM. CHEM. SOC. VOL. 124, NO. 45, 2002 13401