J. Conradie et al. / Inorganica Chimica Acta 358 (2005) 2530–2542
2541
[3] G.J.J. Steyn, A. Roodt, J.G. Leipoldt, Inorg. Chem. 31 (1992)
3477.
3.3. X-ray structure determination
[4] J.G. Leipoldt, S.S. Basson, J.J.J. Schlebusch, E.C. Grobler, Inorg.
Chim. Acta 62 (1982) 113.
Crystals of 9 were obtained from hot hexane by slowly
cooling the reaction mixture. A dark red block crystal was
mounted on a glass fiber rod and intensity data were col-
lected on a Rigaku AFC5R diffractometer using graphite
monochromated Mo Ka radiation and a rotating anode
generator. Cell constants and an orientation matrix for
data collection, obtained from a least-squares refinement
using the setting angles of 25 carefully centred reflections
in the range 28.44ꢀ < 2h < 36.52ꢀ, corresponded to a C-
centred monoclinic cell. Of the 5291 reflections which
were collected, 5091 were unique (Rint = 0.040). The lin-
ear absorption coefficient, l, for Mo Ka radiation was
18.79 cmꢀ1. An empirical absorption correction based
on azimuthal scans of several reflections was applied
which resulted in transmission factors ranging from 0.69
to 1.00. The data were corrected for Lorentz and polarisa-
tion effects.
The structure was solved by direct methods (SHELXS-
86) [35] and expanded using Fourier techniques (DIRDIF-
94) [36]. Some non-hydrogen atoms were refined aniso-
tropically, while the rest were refined isotropically.
Hydrogen atoms were included but not refined. The
CF3 group is disordered with both rotational disorder
and with the carbon atom in slightly different positions.
The groups were refined as two rigid groups with isotropic
thermal parameters and with the C–F distances defined as
[5] C.E. Hickey, P.M. Maitlis, J. Chem. Soc., Chem. Commun.
(1984) 1609.
[6] A. Borrini, G. Ingrosso, J. Organomet. Chem. (1977) 275.
[7] S. Back, R.A. Gossage, H. Lang, G. van Koten, Eur. J. Inorg.
Chem. (2000) 1457.
[8] M.I. Bruce, B.C. Hall, P.J. Low, M.E. Smith, B.W. Skelton,
A.H. White, Inorg. Chim. Acta 300 (2000) 633.
[9] M. Laly, R. Broussier, B. Gautheron, Tetrahedron Lett. 41 (2000)
183.
[10] L. Hao, M.A. Mansour, R.J. Lachicotte, H.J. Gysling, R.
Eisenberg, Inorg. Chem. 39 (2000) 5520.
[11] W.C. Du Plessis, T.G. Vosloo, J.C. Swarts, J. Chem. Soc., Dalton
Trans. (1998) 2507.
[12] T.G. Vosloo, W.C. Du Plessis, J.C. Swarts, Inorg. Chim. Acta
331 (2002) 188.
[13] J. Conradie, G.J. Lamprecht, S. Otto, J.C. Swarts, Inorg. Chim.
Acta 328 (2002) 191.
[14] W.C. Du Plessis, J.J.C. Erasmus, G.J. Lamprecht, J. Conradie,
T.S. Cameron, M.A.S. Aquino, J.C. Swarts, Can. J. Chem. 77
(1999) 378.
[15] See for example C. Creutz, H. Taube, J. Am. Chem. Soc. 91
(1969) 3988.
[16] W.E. Geiger, N. Van Order, D.T. Pierce, T.E. Bitterwolf,
A.L. Reingold, N.D. Chasteen, Organometallics 10 (1991)
2403.
[17] N. Van Order, W.E. Geiger, T.E. Bitterwolf, A.L. Reingold,
J. Am. Chem. Soc. 109 (1987) 5680.
[18] D.T. Pierce, W.E. Geiger, Inorg. Chem. 33 (1994) 373.
[19] T.G. Vosloo, J.C. Swarts, Trans. Met. Chem. 27 (2002)
411.
˚
1.31 A. The final cycle of full-matrix least-squares refine-
[20] See for example V.F. Kuznetsov, G.A. Facey, G.P.A. Yap, H.
Alper, Organometallics 18 (1999) 4706.
ment on F was based on 1418 observed reflections
(I > 3.00r(I)) and 194 variable parameters. All calcula-
tions were performed using the teXsan [37] crystallo-
graphic software package of the Molecular Structure
Corporation. Relevant crystal data are given in Table 3.
[21] S.S. Basson, J.G. Leipoldt, J.A. Venter, Acta Crystallogr. C 46
(1990) 1324.
[22] P.W. Atkins, Physical Chemistry, fifth ed., Oxford University
Press, Oxford, 1994, p. 288.
[23] P.M. Bush, J.P. Whitehead, C.C. Pink, E.C. Gramm, J.L. Eglin,
S.P. Watton, L.E. Pence, Inorg. Chem. 40 (2001) 1871.
[24] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochman,
Advanced Inorganic Chemistry, sixth ed., John Wiley and Sons,
New York, 1999, p. 1053.
Acknowledgements
[25] V. Gutman, The Donor–acceptor Approach to Molecular Inter-
actions, Plenum Press, New York, 1978, p. 20.
[26] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochman,
Advanced Inorganic Chemistry, sixth ed., John Wiley and Sons,
New York, 1999, p. 1053.
The authors gratefully acknowledge financial assis-
tance from the Foundation for Research and Develop-
ment and the Central Research Fund of the University
of the Free State.
[27] G.J. Lamprecht, J.C. Swarts, J. Conradie, J.G. Leipoldt, Acta
Crystallogr. C 49 (1993) 82.
[28] J. Conradie, A. Roodt, G.J. Lamprecht, J.C. Swarts, unpublished
results.
Appendix A. Supplementary data
[29] J.C. Swarts, T.G. Vosloo, J.G. Leipoldt, G.J. Lamprecht, Acta
Crystallogr. C 49 (1993) 760.
Supplementary data associated with this article can
[30] F. Huq, A.C. Skapski, J. Cryst. Mol. Struct. 4 (1974) 411.
[31] N.A. Bailey, E. Coates, G.B. Robertson, F. Bonati, R. Ugo,
Chem. Commun. (1967) 1041.
[32] J.G. Leipoldt, L.D.C. Bok, S.S. Basson, J.S. Van Vol-
lenhoven, T.I.A. Gerber, Inorg. Chim. Acta 25 (1977) L63–
L64.
References
[33] R.C. Weast, Handbook of Chemistry and Physics, 63rd
ed., The Chemical Rubber Company, Cleveland, OH, p.
F180.
[1] J. Jones, Platinum Met. Rev. 44 (2000) 94.
[2] J.A. Venter, J.G. Leipoldt, R. van Eldik, Inorg. Chem. 30 (1991)
2207.
[34] J.C. Swarts, E.H.G. Langner, N. Krokeide-Hove, M.J. Cook, J.
Mater. Chem. 11 (2001) 434.