Inorganic Chemistry
Article
to the corresponding phosphonic acid 2 was achieved by following the
procedure similar to that described above for 1.
with SAINT.24 The measured intensities were reduced to F2 and
corrected for absorption with SADABAS.25 Structure solution,
refinement, and data output were carried out using the SHELXTL
program.26 All the non-H atoms were refined anisotropically. H atoms
were placed in geometrically calculated positions by using a riding
model unless stated otherwise. Images were created using the
Diamond program.27 In compound 4, one trimethylsilyl group is
disordered over two sites in the ratio of 1:1, and three ethyl groups are
disordered in the ratio of 2:1. The atom C24A in one disordered ethyl
group was refined with restrained atomic displacement parameters
(ADP).
Me3SiC(CH3)2P(O)(OEt)2 (2a). bp 70−72 °C/0.07 mm. Yield: 3.9 g,
1
78.0%. H NMR (CDCl3): δ 4.03 (m, 4H, P−OCH2), 1.28 (t, 6H,
3
3
PO−CH2CH3, JH−H = 7.2 Hz), 1.14 (d, 6H, P−C(CH3)2, JP−H
=
18.6 Hz), 0.08 (S, 9H, Si−CH3). 13C{1H} NMR (CDCl3): 60.8 (d, P−
2
1
OCH2, JP−O−C = 6.15 Hz), 23.3 (d, P−C(CH3), JP−C = 134.8 Hz),
19.1 (d, P−CH2, 2JP−C = 5.6 Hz), 16.3(d, P(OCH2)CH3, 3JP−O−C = 6.5
Hz), −1.5 (S, Si−CH3). 31P{1H} NMR (CDCl3): δ 38.4. 29Si{1H}
NMR (CDCl3): δ −0.26. Anal. Calcd for C10H25O3PSi (252.13): C,
47.59; H, 9.99. Found: C, 47.53; H, 10.01%.
Me3SiC(CH3)2P(O)(OH)2 (2). Yield: 2.4 g, 77.0%. 1H NMR (CDCl3):
3
δ 7.40 (br, 2H, P−OH), 1.20 (d, 6H, P−C(CH3)2, JP−H = 18.6 Hz),
ASSOCIATED CONTENT
0.14 (S, 9H, Si−CH3). 13C{1H} NMR (CDCl3): 23.2 (d, P−C(CH3)2,
1JP−C = 136.6 Hz), 19.1 (d, P−C(CH3)2, 2JP−C = 5.6 Hz), −2.0 (S, Si−
CH3). 31P{1H} NMR (CDCl3): δ 45.2. 29Si{1H} NMR (CDCl3): δ
0.03. IR (KBr, cm−1): 1251 (νSi−Me), 1205, 1134 (νPO3), 2358 (br,
νP−OH), hydrogen bonded. ESI-MS (m/z): 197.0747 [M + H]+,
393.1427 [2M + H]+, 589.2137 [3M + H]+, 785.2891 [4M + H]+,
981.3614 [5M + H]+, 1177.4359 [6M + H]+. Anal. Calcd for
C6H17O3PSi (196.06): C, 36.72; H, 8.73. Found: C, 36.68; H, 8.81%.
Synthesis of 3−5. The solution containing diethyltin(methoxy)-
methanesulfonate (0.52 g, 1.74 mmol) and 1 (0.30 g, 1.74 mmol) or 2
(0.35 g, 1.74 mmol) in dichloromethane was stirred for 8 h at room
temperature. Thereafter, the solvent was removed under vacuum, and
n-hexane was added to afford, in each case, a white solid, which was
filtered and dried under vacuum. The synthesis of 5 was achieved by
azeotropic dehydration reaction between diethyltin oxide (0.52 g, 1.74
mmol) and 1 (0.30 g, 1.74 mmol) in toluene under refluxed
conditions. The product was precipitated using methanol.
■
S
* Supporting Information
Selected NMR spectra, powder X-ray diffraction pattern,
scanning electron micrograph, and crystallographic data for
the structural analysis (in CIF format). This material is available
crystallographic information can be obtained free of charge
(CCDC Nos. 991294−991297 for 1−4).
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
1
Et2Sn{OP(O)(OH)CH2SiMe3}(OSO2Me) (3). Yield: 0.65 g, 88.0%. H
NMR (CDCl3): δ 2.77 (S, 3H, SCH3), 1.66 (br, 4H, SnCH2), 1.34 (t,
ACKNOWLEDGMENTS
3
2
■
6H, Sn(CH2)CH3, JH−H = 8.1 Hz), 1.21 (d, 2H, P−CH2, JP−H =12
Hz), 0.11 (S, 9H, Si−CH3). 13C{1H} NMR (CDCl3): δ 39.3 (S, S−
The work was supported by CSIR Grant No. [01(2651)/12/
EMR-II]. N.S. is grateful to CSIR for providing Senior Research
Fellowship.
1
1
CH3), 20.7 (S, Sn−CH2, JSn−C = 648 Hz), 17.3 (d, P−CH2, JP−C
=
2
129.7 Hz), 9.2 (S, Sn(CH2)CH3, JSn−C = 35.46 Hz), −0.26 (S, Si−
CH3). 31P{1H} NMR (CDCl3): δ 28.6. 119Sn{1H} NMR (CDCl3): δ
−250. IR (KBr, cm−1): 1208, 1194, 1118, 1057 (νSO3 + νPO3), 1240
(νSi−Me), 2362 (νP−OH), hydrogen bonded. Anal. Calcd for C9H25O6-
PSSiSn (439.99): C, 24.62; H, 5.74. Found: C, 24.54; H, 5.81%.
REFERENCES
■
(1) (a) Song, S.-Y.; Ma, J.-F.; Yang, J.; Gao, L.-L.; Su, Z.-M.
Organometallics 2007, 26, 2125. (b) Kumara Swamy, K. C.; Schmid, C.
G.; Day, R. O.; Holmes, R. R. J. Am. Chem. Soc. 1990, 112, 223.
(c) Chandrasekhar, V.; Baskar, V.; Steiner, A.; Zacchini, S. Organo-
metallics 2002, 21, 4528.
(2) Ribot, F.; Sanchez, C.; Biesemans, M.; Mercier, F. A. G.; Martins,
J. C.; Gielen, M.; Willem, R. Organometallics 2001, 20, 2593.
(3) Molloy, K. C.; Hossain, M. B.; van der Helm, D.; Cunningham,
D.; Zuckerman, J. J. Inorg. Chem. 1981, 20, 2402.
(4) (a) Xie, Y.-P.; Ma, J.-F.; Yang, J.; Su, M.-Z. Dalton Trans. 2010,
39, 1568. (b) Ma, C.; Yang, M.; Zhang, R.; Du, L. Inorg. Chim. Acta
2008, 361, 2979.
(5) Molloy, K. C.; Nasser, F. A. K.; Barnes, C. L.; Helm, D. V. D.;
Zuckerman, J. J. Inorg. Chem. 1982, 21, 960.
1
(Et2Sn)6{O3PC(CH3)2SiMe3}4(OSO2Me)4 (4). Yield: 2.0 g, 54.0%. H
NMR (CDCl3): δ 2.80 (S, 3H, SCH3), 1.74 (br, 4H, Sn−CH2), 1.43
3
(t, 6H, Sn(CH2)CH3, JH−H = 7.5 Hz), 1.18 (d, 6H, P−C(CH3)2,
3JP−H = 19.2 Hz), 0.09 (S, 9H, Si−CH3). 13C{1H} NMR (CDCl3): δ
1
39.6 (S, S−CH3), 23.1 (d, P−CH2, JP−C = 133.7 Hz), 20.4 (S, Sn−
2
CH2), 19.2 (d, P−C(CH3)2, JP−C = 5.6 Hz), 9.4 (S, Sn(CH2)CH3),
−2.6 (S, Si−CH3). 31P{1H} NMR (CDCl3): δ 31.6 (2JSn−O−P = 147.4
Hz). 119Sn{1H} NMR (CDCl3): δ −237 (2JSn−O−P = 147.6 Hz). IR
(KBr, cm−1): 1208, 1085, 1036, 1002 (νSO3 + νPO3), 1245 (νSi−Me).
Anal. Calcd for C52H132O24P4S4Si4Sn6 (2218.19): C, 28.15; H, 6.00.
Found: C, 28.09; H, 6.08%.
1
Et2Sn(O3PCH2SiMe3) (5). Yield: 0.40 g, 68.0%. H NMR (CDCl3):
1.66−1.64 (br, 4H, Sn−CH2), 1.39−1.28 (br, 6H, Sn−CH3), 1.00 (d,
2
2H, P−CH2, JP−H = 21 Hz), 0.11 (S, 9H, Si−CH3), 13C{1H} NMR
(6) (a) Mehring, M.; Low, C.; Schurmann, M.; Jurkschat, K. Eur. J.
̈
̈
1
Inorg. Chem. 1999, 887. (b) Mehring, M.; Vrasidas, I.; Horn, D.;
Schurmann, M.; Jurkschat, K. Organometallics 2001, 20, 4647.
(CDCl3): 21.1 (S, Sn−CH2), 18.5 (d, P−CH2, JP−C = 129.7 Hz), 9.9
3
(S, Sn(CH2)CH3), 0.23 (S, Si−CH3, JP−C = 3.7 Hz), 31P{1H} NMR
̈
(CDCl3): δ 17.1 (2JSn−O−P = 141 Hz). 119Sn{1H} NMR (CDCl3):
(c) Peveling, K.; Henn, M.; Low, C.; Mehring, M.; Schurmann, M.;
̈
̈
2
−282 (q, JSn−O−P = 141 Hz). IR (KBr, cm−1): 1092, 1036, 1002
Costisella, B.; Jurkschat, K. Organometallics 2004, 23, 1501.
(7) (a) Shankar, R.; Jain, A.; Kociok-Kohn, G.; Molloy, K. C. Inorg.
̈
(νPO3), 1260 (νSi−Me). Anal. Calcd for C8H21O3PSiSn (344.00): C,
28.01; H, 6.17. Found: C, 27.98; H, 6.23%.
Chem. 2011, 50, 1339. (b) Shankar, R.; Singh, A. P.; Jain, A.; Mahon,
M. F.; Molloy, K. C. Inorg. Chem. 2008, 47, 5930. (c) Shankar, R.; Jain,
A.; Singh, A. P.; Molloy, K. C. Phosphorus, Sulfur Silicon Relat. Elem.
2011, 186, 1375. (d) Shankar, R.; Singh, A. P.; Upreti, S. Inorg. Chem.
2006, 45, 9166. (e) Shankar, R.; Jain, A.; Singh, A. P.; Kociok-Kohn,
G.; Molloy, K. C. Inorg. Chem. 2009, 48, 3608.
X-ray Crystallography. The intensity data of 1−4 were collected
using a Nonius Kappa CCD diffractometer equipped with a
molybdenum-sealed tube and a highly oriented graphite mono-
chromator at 150(2) K. Cell parameters, data reduction, and
absorption corrections were performed using Nonius software
(DENZO and SCALEPACK).20 The structure was solved by direct
methods using SIR-9721 and refined by a full-matrix least-squares
method on F2 using SHELXL-2013.22 All calculations and graphics
were performed using WinGx.23 Partial atoms were refined isotropi-
cally. Frames were collected by ω, φ, and 2θ rotation at 10 s per frame
̈
(8) (a) Spokoyny, A. M.; Kim, D.; Sumrein, A.; Mirkin, C. A. Chem.
Soc. Rev. 2009, 38, 1218. (b) Oh, M.; Mirkin, C. A. Nature Lett. 2005,
438, 651. (c) Flugel, E. A.; Ranft, A.; Haase, F.; Lotsch, B. V. J. Mater.
̈
Chem. 2012, 22, 10119. (d) Xu, G.; Yamada, T.; Otsubo, K.; Sakaida,
S.; Kitagawa, H. J. Am. Chem. Soc. 2012, 134, 16524.
H
dx.doi.org/10.1021/ic500682t | Inorg. Chem. XXXX, XXX, XXX−XXX