Journal of the American Chemical Society
Article
We present a plausible catalytic cycle that is consistent with
our studies in Scheme 6. Catalyst 1 may undergo equilibrium
acetate/phosphate exchange to form an intermediate of type A
having acetate and/or phosphate ligands (denoted X).
Intermediate A binds substrate 2 and subsequently performs
C−H cleavage, producing π-allylPd complex B and 1 equivalent
of proton source (HX). The weakly coordinating ligand (X) on B
may then dissociate to afford cationic complex C, which
undergoes functionalization. Loss of the tert-butyl group during
functionalization may proceed by loss of isobutylene gas with
concomitant generation of a second equivalent of proton and/or
by loss of t-butyl cation and subsequent trapping by DBP or
acetate (forming t-BuX products). We have observed (n-
Taylor for preliminary studies with Lewis acids, Mr. Rulin Ma for
Table 2 repeats, Ms. Jennifer Griffin for checking the procedure
in Table 1, entry 8, and Dr. Jennifer Howell for checking Scheme
5A. We thank Sigma-Aldrich for a generous gift of catalyst 1 and
Johnson Matthey for a gift of Pd(OAc)2.
REFERENCES
■
(
1) (a) Akyiama, T. Chem. Rev. 2007, 107, 5744. (b) Terada, M. Chem.
Commun. 2008, 4097. (c) Kampen, D.; Reisinger, C. M.; List, B. Top.
Curr. Chem. 2010, 291, 395. (d) Xu, H.; Zeund, S. J.; Woll, M. G.; Tao,
Y.; Jacobsen, E. N. Science 2010, 327, 986. (e) Rueping, M.; Uria, U.; Lin,
M.-Y.; Atodiresei, I. J. Am. Chem. Soc. 2011, 133, 3732. (f) Chon, C. H.;
Yamamoto, H. Chem. Commun. 2011, 47, 3043.
BuO) P(O)(Ot-Bu) in crude reaction mixtures, suggesting
(2) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336.
(3) Chai, Z.; Rainey, T. J. Am. Chem. Soc. 2012, 134, 3615.
(4) Roggen, M.; Carreira, E. M. Angew. Chem., Int. Ed. 2012, 51, 8652.
2
24,25
that this pathway is operating to some degree.
Finally,
proton-assisted reoxidation of Pd(0) to Pd(II) by BQ reforms A
and dihydroquinone (DHQ), completing the catalytic cycle.
(5) (a) Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346.
(
b) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am.
Chem. Soc. 2005, 127, 6970. (c) Fraunhoffer, K. J.; Prabagaran, N.;
Sirois, L. E.; White, M. C. J. Am. Chem. Soc. 2006, 128, 9032. (d) Covell,
D. J.; White, M. C. Angew. Chem., Int. Ed. 2008, 47, 6448. (e) Gormisky,
P. E.; White, M. C. J. Am. Chem. Soc. 2011, 133, 12584. (f) Malik, H. A.;
Taylor, B. L. H.; Kerrigan, J. R.; Grob, J. E.; Houk, K. N.; Du Bois, J.;
Hamman, L. G.; Patterson, A. W. Chem. Sci. 2014, 5, 2352. (g) Gade, N.
R.; Iqbal, J. Tetrahedron Lett. 2013, 54, 4225.
CONCLUSION
■
We describe a Pd(II)/bis-sulfoxide/phosphoric acid catalyzed
intramolecular allylic C−H oxidation of simple homoallylic, Boc-
protected amine substrates to furnish anti-vinyl oxazolidinones.
This method provides unprecedented direct access to these
important heterocycles with outstanding stereoselectivities and
novel regioselectivities. Mechanistic studies suggest the in situ
generation of a Pd(II)/bis-sulfoxide/phosphate complex that is
capable of promoting both C−H cleavage and π-allylPd
functionalization with the weak, aprotic N-Boc amine pro-
nucleophile. These findings have important future implications
for effecting asymmetric induction under this general allylic C−
(6) (a) Young, A. J.; White, M. C. J. Am. Chem. Soc. 2008, 130, 14090.
(
(
b) Young, A. J.; White, M. C. Angew. Chem., Int. Ed 2011, 50, 6824.
c) Lin, S.; Song, C.-X.; Cai, G.-X.; Wang, W.-H.; Shi, Z.-J. J. Am. Chem.
Soc. 2008, 130, 12901. (d) Howell, J. M.; Liu, W.; Young, A. J.; White, M.
C. J. Am. Chem. Soc. 2014, 136, 5750.
(
(
(
7) Stang, E. M.; White, M. C. J. Am. Chem. Soc. 2011, 133, 14892.
8) Braun, M.; Doyle, A. F. J. Am. Chem. Soc. 2013, 135, 12990.
9) (a) Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2008, 130, 3316.
26
H oxidation manifold.
(
1
b) Reed, S. A.; Mazzotti, A. R.; White, M. C. J. Am. Chem. Soc. 2009,
31, 11701. (c) Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2009, 131,
EXPERIMENTAL PROCEDURES
■
General Procedure for the Allylic C−H Oxidation Reaction
Table 2). A 1-dram vial was sequentially charged with substrate 2 (1.0
11707. (d) Qi, X.; Rice, G. T.; Lall, M. S.; Plummer, M. S.; White, M. C.
Tetrahedron 2010, 66, 4816. (e) Nahra, F.; Liron, F.; Prestat, G.; Mealli,
C.; Messaoudi, A.; Poli, G. Chem.Eur. J. 2009, 15, 11078.
(
equiv, 0.3 mmol), benzoquinone (48.6 mg, 1.5 equiv, 0.45 mmol), and
catalyst 1 (15.1 mg, 0.1 equiv, 0.03 mmol). A stir bar was added to the
vial, then 1,4-dioxane (0.15 mL, 2.0 M with respect to substrate) was
added to the vial via syringe, followed by dibutyl phosphate (28 μL, 0.5
equiv, 0.15 mmol). The vial was capped with a Teflon cap and stirred at
̈
(10) (a) Grennberg, H.; Gogol, A.; Backvall, J.-E. Organometallics
1993, 12, 1790. (b) Popp, B. V.; Stahl, S. S. Top. Organomet. Chem. 2007,
22, 149. (c) Deccharin, N.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 5732.
(11) Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129, 7274.
(12) Strambeanu, I.; White, M. C. J. Am. Chem. Soc. 2013, 135, 12032.
(13) Lin, G.-J.; Huang, P.-Q. Org. Biomol. Chem. 2009, 7, 4491.
(14) See the Supporting Information.
4
5 °C for 24 h. The reaction was diluted with CH Cl and transferred to
2 2
a separatory funnel. The mixture was washed with H O, the layers were
2
separated, and the aqueous layer was extracted with CH Cl (3 × 20
mL). Combined organics were dried over MgSO , filtered through a pad
of Celite, and concentrated. H NMR spectroscopy was performed on
the crude mixture to determine the diastereomeric ratio. Flash
2
2
4
(15) Significant amounts of olefin isomerization are also observed with
AgOTf and B(C F ) .
1
6
5 3
(16) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35,
chromatography was performed to isolate pure product 3.
9
84.
(
17) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2003, 125, 9578.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, characterization data, and H and C
(18) (a) Li, F.; Li, Z.-M.; Yang, H.; Jager, V. Z. Naturforsch. 2008, 63b,
31. (b) Enantioselective Synthesis of β-Amino Acids, 2nd ed.; Juaristi, E.;
■
*
S
4
1
13
Soloshonok, V. A., Eds.; Wiley-VCH: New York, 2005.
(19) Feske, B. D. Curr. Org. Chem. 2007, 11, 483.
(20) For synthesis of the enantiomer of 10 see: (a) Kino, J.;
Matsushima, Y. Tetrahedron Lett. 2005, 46, 8609. (b) Matsushima, Y.;
Nakayama, T.; Tohyama, S.; Eguchi, T.; Kakinuma, K. J. Chem. Soc. Perk.
Trans. 1 2001, 569.
AUTHOR INFORMATION
(21) Schroeder, D. R.; Colson, K. L.; Klohr, S. E.; Lee, M. S.; Matson, J.
A.; Brinen, L. S.; Clardy, J. J. Antibiot. 1996, 49, 865.
(
(
22) Trost, B. M.; Sudhakar, A. R. J. Am. Chem. Soc. 1987, 109, 3792.
23) (a) Shapiro, N. D.; Rauniyar, V.; Hamilton, G. L.; Wu, J.; Toste, F.
Notes
The authors declare no competing financial interest.
D. Nature 2011, 470, 245. (b) Mahattananchai, J.; Bode, J. W. Acc. Chem.
Res. 2014, 47, 696. (c) Phillips, E. M.; Chan, A.; Scheidt, K. A. Aldrichim.
Acta 2009, 42, 55. (d) Vora, H. U.; Wheeler, P.; Rovis, T. Adv. Synth.
Catal. 2012, 354, 1617.
(24) (a) Observation of tBu-X products is analogous to Corey’s
observation of apparent t-Bu scavenging by solvent acetonitrile in a
ACKNOWLEDGMENTS
Financial support was provided by the NIH/NIGMS (2R01 GM
76153B). T.J.O. thanks the University of Illinois for a
■
0
+
Springborn Graduate Fellowship. We thank Mr. Christopher
1
1180
dx.doi.org/10.1021/ja506036q | J. Am. Chem. Soc. 2014, 136, 11176−11181