10.1002/cplu.201900188
ChemPlusChem
FULL PAPER
[8]
a) M. J. Earle, S. P. Katdare, K. R. Seddon, Org. Lett. 2004, 6, 707-710;
b) W. E. S. Hart, L. Aldous, J. B. Harper, Org. Biomol. Chem. 2017, 15,
5556-5563.
[9]
C. L. Hussey, Pure Appl. Chem. 1988, 60, 1763-1772.
[10] a) P. Pavez, D. Millán, J. I. Morales, E. A. Castro, C. López A, J. G.
Santos, J. Org. Chem. 2013, 78, 9670-9676; b) M. Gazitúa, R. A. Tapia,
R. Contreras, P. R. Campodónico, New J. Chem. 2014, 38, 2611-2618;
c) P. Pavez, D. Millán, C. Cocq, J. G. Santos, F. Nome, New J. Chem.
2015, 39, 1953-1959; d) J. Alarcón-Espósito, R. Contreras, R. A. Tapia,
P. R. Campodónico, Chem. Eur. J. 2016, 22, 13347-13351; e) P. Pavez,
D. Millán, J. Morales, M. Rojas, D. Céspedes, J. G. Santos, Org. Biomol.
Chem. 2016, 14, 1421-1427; f) M. Gazitúa, R. A. Tapia, R. Contreras, P.
R. Campodónico, New J. Chem. 2018, 42, 260-264.
[11] a) G. Ranieri, J. P. Hallett, T. Welton, Ind. Eng. Chem. Res. 2008, 47,
638-644; b) Y.-H. Oh, H. B. Jang, S. Im, M. J. Song, S.-Y. Kim, S.-W.
Park, D. Y. Chi, C. E. Song, S. Lee, Org. Biomol. Chem. 2011, 9, 418-
422.
[12] a) R. Bini, C. Chiappe, C. S. Pomelli, B. Parisi, J. Org. Chem. 2009, 74,
8522-8530; b) C. E. Rosella, Harper, J. B., Tetrahedron Lett. 2009, 50,
992-994; c) B. J. Butler, Harper, J. B., New J. Chem. 2015, 39, 213-
219; d) R. R. Hawker, M. J. Wong, R. S. Haines, J. B. Harper, Org.
Biomol. Chem. 2017, 15, 6433-6440; e) A. Gilbert, R. S. Haines, J. B.
Harper, Org. Biomol. Chem. 2019, 17, 675-682.
[13] a) H. M. Yau, S. A. Barnes, J. M. Hook, T. G. A. Youngs, A. K. Croft, J.
B. Harper, Chem. Commun. 2008, 3576-3578; b) S. G. Jones, H. M.
Yau, E. Davies, J. M. Hook, T. G. A. Youngs, J. B. Harper, A. K. Croft,
Phys. Chem. Chem. Phys. 2010, 12, 1873-1878; c) E. E. L. Tanner, R.
R. Hawker, H. M. Yau, A. K. Croft, J. B. Harper, Org. Biomol. Chem.
2013, 11, 7516-7521; d) B. J. Butler, J. B. Harper, J. Phys. Org. Chem.
2016, 29, 700-708; e) S. T. Keaveney, B. P. White, R. S. Haines, J. B.
Harper, Org. Biomol. Chem. 2016, 14, 2572-2580; f) R. R. Hawker, R. S.
Haines, J. B. Harper, Org. Biomol. Chem. 2018, 16, 3453-3463; g) B. J.
Butler, J. B. Harper, J. Phys. Org. Chem. 2019, 32, e3819.
[14] a) H. M. Yau, A. K. Croft, J. B. Harper, Faraday Discuss. 2012, 154,
365-371; b) E. E. L. Tanner, H. M. Yau, R. R. Hawker, A. K. Croft, J. B.
Harper, Org. Biomol. Chem. 2013, 11, 6170-6175; c) H. M. Yau, A. G.
Howe, J. M. Hook, A. K. Croft, J. B. Harper, Org. Biomol. Chem. 2009,
7, 3572-3575; d) S. T. Keaveney, J. B. Harper, RSC Adv. 2013, 3,
15698-15704; e) S. T. Keaveney, D. V. Francis, W. Cao, R. S. Haines,
J. B. Harper, Aust. J. Chem. 2014, 68, 31-35; f) R. R. Hawker, R. S.
Haines, J. B. Harper, Chem. Commun. 2018, 54, 2296-2299; g) K. S.
Schaffarczyk McHale, R. R. Hawker, J. B. Harper, New J. Chem. 2016,
40, 7437-7444; h) K. S. Schaffarczyk McHale, R. S. Haines, J. B.
Harper, ChemPlusChem 2018, 83, 1162-1168.
[15] a) S. T. Keaveney, J. B. Harper, A. K. Croft, ChemPhysChem 2018, 19,
3279-3287; b) S. T. Keaveney, K. S. Schaffarczyk McHale, R. S.
Haines, J. B. Harper, Org. Biomol. Chem. 2014, 12, 7092-7099; c) S. T.
Keaveney, R. S. Haines, J. B. Harper, Org. Biomol. Chem. 2015, 13,
3771-3780.
[16] These interactions are assumed to be with the lone pair of the
phosphorus in an analogous fashion to the nitrogen case. The
decreased localisation of the lone pair is consistent with the decreased
importance of these interactions.
[17] a) H.-F. Grützmacher, D. Kirchhoff, H. Grützmacher, Organometallics
2001, 20, 3738-3744; b) M. Yuhki, N. Makoto, Bull. Chem. Soc. Jpn.
2003, 76, 1029-1034.
[18] a) W. E. Morgan, W. J. Stec, J. R. Van Wazer, Inorg. Chem. 1973, 12,
953-955; b) I. W. Scanlan, D. T. Clark, J. Chem. Soc. 1973, 70, 1222-
1232; c) R. V. Hodges, Beauchamp, J. L., Ashes, A. J., Chan, W. T.,
Organometallics 1985, 4, 457-461; d) E. Becker, C. Slugovc, E. Rüba,
C. Standfest-Hauser, K. Mereiter, R. Schmid, K. Kirchner, J. Organomet.
Chem. 2002, 649, 55-63; e) D. C. Babbini, F. L. Mulligan, H. R.
Schulhauser, T. C. Sweigart, G. S. Nichol, S. K. Hurst, Inorg. Chem.
2010, 49, 4307-4312.
[19] The triphenylamine 1a case is not included in the comparison here as
the rate constants are all < 10-8 mol-1 L s-1 and hence do not readily fit
on the same scale as the other nucleophiles 1b-e. Other
representations obscure the trends that are subsequently discussed; for
comparisons see Figures S1 and S2 in the Supporting Information.
[20] T. Welton, in Ionic Liquids in Synthesis, 2nd ed. (Eds.: P. Wasserscheid,
T. Welton), Wiley-VCH, Weinheim, Germany, 2008, pp. 130-175.
[21] F. Brotzel, Y. C. Chu, H. Mayr, J. Org. Chem. 2007, 72, 3679-3688.
[22] T. Kanzian, T. A. Nigst, A. Maier, S. Pichl, H. Mayr, EJOC 2009, 2009,
6379-6385.
[23] B. Kempf, H. Mayr, Chem. Eur. J. 2005, 11, 917-927.
[24] H. Eyring, J. Chem. Phys. 1935, 3, 107-115.
[25] The alternative argument is that if the lone pair is more charge diffuse
as you get to heavier heteroatoms then the degree of bond formation in
the transition state would be expected to decrease (an ‘early’ transition
state) meaning the ionic liquid might interact more favourably with a
transition state which more closely resembles the starting materials.
[26] W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals,
Seventh ed., Butterworth-Heinemann, Oxford, 2013.
[27] S. Zhang, X. Zhang, X. Ling, C. He, R. Huang, J. Pan, J. Li, Y. Xiong,
RSC Adv. 2014, 4, 30768-30774.
This article is protected by copyright. All rights reserved.